[1] D. Wischral, H. Fu, F.L.P. Pessoa, N. Pereira, S.T. Yang, Effective and simple recovery of 1,3-propanediol from a fermented medium by liquid-liquid extraction system with ethanol and K3PO4, Chinese J. Chem. Eng. 26 (2018) 104-108 [2] G.X. Xu, C. Shao, Z.L. Xiu, Optimizing control of bio-dissimilation process of glycerol to 1, 3-propanediol, Chin. J. Chem. Eng. 16 (1) (2008) 128-134 [3] Y. Nakagawa, Y. Shinmi, S. Koso, K. Tomishige, Direct hydrogenolysis of glycerol into 1, 3-propanediol over rhenium-modified iridium catalyst, J. Catal. 272 (2) (2010) 191-194 [4] T. Homann, C. Tag, H. Biebl, W.D. Deckwer, B. Schink, Fermentation of glycerol to 1, 3-propanediol by Klebsiella and Citrobacter strains, Appl. Microbiol. Biotechnol. 33 (2) (1990) 121-126 [5] G.X. Xu, Y. Liu, Q.W. Gao, Multi-objective optimization of a continuous bio-dissimilation process of glycerol to 1, 3-propanediol, J Biotechnol 219 (2016) 59-71 [6] T. Kaeding, J. DaLuz, J. Kube, A.P. Zeng, Integrated study of fermentation and downstream processing in a miniplant significantly improved the microbial 1, 3-propanediol production from raw glycerol, Bioprocess Biosyst Eng 38 (3) (2015) 575-586 [7] J.P. Tan, Z.K. Tee, W.N. Roslam Wan Isahak, B.H. Kim, A.J. Asis, J.M. Jahim, Improved fermentability of pretreated glycerol enhanced bioconversion of 1, 3-propanediol, Ind. Eng. Chem. Res. 57 (37) (2018) 12565-12573 [8] S.H. Feng, B.B. Zhao, Y. Liang, L. Liu, J.X. Dong, Improving selectivity to 1, 3-propanediol for glycerol hydrogenolysis using W- and Al-incorporated SBA-15 as support for Pt nanoparticles, Ind. Eng. Chem. Res. 58 (8) (2019) 2661-2671 [9] M.Y. Gu, Z. Shen, L. Yang, B.Y. Peng, W.J. Dong, W. Zhang, Y.L. Zhang, The effect of catalytic structure modification on hydrogenolysis of glycerol into 1, 3-propanediol over platinum nanoparticles and ordered mesoporous alumina assembled catalysts, Ind. Eng. Chem. Res. 56 (46) (2017) 13572-13581 [10] P. Suppuram, G.G. Ramakrishnan, R. Subramanian, An integrated process for the production of 1, 3-propanediol, lactate and 3-hydroxypropionic acid by an engineered Lactobacillus reuteri, Biosci. Biotechnol. Biochem. 83 (4) (2019) 755-762 [11] D.T. Pan, X.D. Wang, H.Y. Shi, D.C. Yuan, Z.L. Xiu, Ensemble optimization of microbial conversion of glycerol into 1, 3-propanediol by Klebsiella pneumoniae, J Biotechnol 301 (2019) 68-78 [12] D.P. Niu, L. Zhang, F.L. Wang, Modeling and parameter updating for nosiheptide fed-batch fermentation process, Ind. Eng. Chem. Res. 55 (30) (2016) 8395-8402 [13] E.E. Johnson, L. Rehmann, The role of 1, 3-propanediol production in fermentation of glycerol by Clostridium pasteurianum, Bioresour Technol 209 (2016) 1-7 [14] H. Bei, L. Wang, Y. Ma, J. Sun, L. Zhang, A linear optimal feedback control for producing 1,3-propanediol via microbial fermentation, Discrete Cont. Dyn.-S 13(2020) 1623-1635 [15] L. Wang, J.L. Yuan, C.Z. Wu, X.Y. Wang, Practical algorithm for stochastic optimal control problem about microbial fermentation in batch culture, Optim. Lett. 13 (3) (2019) 527-541 [16] G. Kaur, A.K. Srivastava, S. Chand, Determination of kinetic parameters of 1, 3-propanediol fermentation by Clostridium diolis using statistically optimized medium, Bioprocess Biosyst Eng 35 (7) (2012) 1147-1156 [17] N. Patel, N. Padhiyar, Multi-objective dynamic optimization study of fed-batch bio-reactor, Chem. Eng. Res. Des. 119 (2017) 160-170 [18] X.H. Li, J.J. Guo, E.M. Feng, Z.L. Xiu, Discrete optimal control model and bound error for microbial continuous fermentation, Nonlinear Anal.:Real World Appl. 11 (1) (2010) 131-138 [19] J.X. Ye, H.L. Xu, E.M. Feng, Z.L. Xiu, Optimization of a fed-batch bioreactor for 1, 3-propanediol production using hybrid nonlinear optimal control, J. Process. Control. 24 (10) (2014) 1556-1569 [20] A. Markana, N. Padhiyar, K. Moudgalya, Multi-criterion control of a bioprocess in fed-batch reactor using EKF based economic model predictive control, Chem. Eng. Res. Des. 136 (2018) 282-294 [21] Gao J.G., College of Information Science, Engineering Shandong University of Science and Technology Qindao Shandong, Zhao X.Y., Zhai J.G., Optimal control of microbial fed-batch culture involving multiple feeds, Numer. Algebr. Control. Optim. 5(4) (2015) 339-349. [22] X. Wu, K.J. Zhang, C.Y. Sun, Constrained optimal control of switched systems and its application, Optimization 64 (3) (2015) 539-557 [23] X. Wu, K.J. Zhang, M. Cheng, Adaptive numerical approach for optimal control of a single train, J. Syst. Sci. Complex. 32 (4) (2019) 1053-1071 [24] X. Wu, K.J. Zhang, M. Cheng, Optimal control of constrained switched systems and application to electrical vehicle energy management, Nonlinear Anal.:Hybrid Syst. 30 (2018) 171-188 [25] X. Wu, K.J. Zhang, M. Cheng, Sensitivity analysis for an optimal control problem of chemical processes based on a smoothing cost penalty function approach, Chem. Eng. Res. Des. 146 (2019) 221-238 [26] H.S. Hu, S.P. Huang, Z.J. Zhang, Event-triggered control for switched affine linear systems, Int. J. Control. Autom. Syst. 18 (11) (2020) 2867-2878 [27] Y.W. Qi, S. Yuan, X. Wang, Adaptive event-triggered control for networked switched T-S fuzzy systems subject to false data injection attacks, Int. J. Control. Autom. Syst. 18 (10) (2020) 2580-2588 [28] M. Huang, X. Wang, Z.L. Wang, Nonlinear adaptive switching control for a class of non-affine nonlinear systems, Chin. J. Chem. Eng. 24 (9) (2016) 1243-1251 [29] X. Wu, Q.D. Liu, K.J. Zhang, X. Xin, Optimal-tuning of proportional-integral-derivative-like controller for constrained nonlinear systems and application to ship steering control, J. Frankl. Inst. 355 (13) (2018) 5667-5689 [30] W.A. Zhang, L. Yu, S. Yin, A switched system approach to H∞ control of networked control systems with time-varying delays, J. Frankl. Inst. 348 (2) (2011) 165-178 [31] D. Yang, X.D. Li, J.L. Qiu, Output tracking control of delayed switched systems via state-dependent switching and dynamic output feedback, Nonlinear Anal.:Hybrid Syst. 32 (2019) 294-305 [32] R.C. Ma, M.J. Ma, J.H. Li, J. Fu, C.Y. Wu, Standard H∞ performance of switched delay systems under minimum dwell time switching, J. Frankl. Inst. 356 (6) (2019) 3443-3456 [33] X.P. Xu, P.J. Antsaklis, Optimal control of switched systems based on parameterization of the switching instants, IEEE Trans. Autom. Control. 49 (1) (2004) 2-16 [34] X. Wu, K.J. Zhang, M. Cheng, X. Xin, A switched dynamical system approach towards the economic dispatch of renewable hybrid power systems, Int. J. Electr. Power Energy Syst. 103 (2018) 440-457 [35] F. Zhu, P.J. Antsaklis, Optimal control of hybrid switched systems:a brief survey, Discret. Event Dyn. Syst. 25 (3) (2015) 345-364 [36] L. Fainshil, M. Margaliot, A maximum principle for the stability analysis of positive bilinear control systems with applications to positive linear switched systems, SIAM J. Control Optim. 50 (4) (2012) 2193-2215 [37] W.J. Lu, P.P. Zhu, S. Ferrari, A hybrid-adaptive dynamic programming approach for the model-free control of nonlinear switched systems, IEEE Trans. Autom. Control. 61 (10) (2016) 3203-3208 [38] X. Wu, B.J. Lei, K.J. Zhang, M. Cheng, Hybrid stochastic optimization method for optimal control problems of chemical processes, Chem. Eng. Res. Des. 126 (2017) 297-310 [39] X. Wu, K.J. Zhang, C.Y. Sun, Parameter tuning of multi-proportional-integral-derivative controllers based on optimal switching algorithms, J. Optim. Theory Appl. 159 (2) (2013) 454-472 [40] T.M. Caldwell, T.D. Murphey, Switching mode generation and optimal estimation with application to skid-steering, Automatica 47 (1) (2011) 50-64 [41] X. Wu, K.J. Zhang, M. Cheng, Computational method for optimal control of switched systems with input and state constraints, Nonlinear Anal.:Hybrid Syst. 26 (2017) 1-18 [42] R. Vasudevan, H. Gonzalez, R. Bajcsy, S.S. Sastry, Consistent approximations for the optimal control of constrained switched systems:-part 1:a conceptual algorithm, SIAM J. Control Optim. 51 (6) (2013) 4463-4483 [43] R. Vasudevan, H. Gonzalez, R. Bajcsy, S.S. Sastry, Consistent approximations for the optimal control of constrained switched systems:-part 2:an implementable algorithm, SIAM J. Control Optim. 51 (6) (2013) 4484-4503 [44] X. Wu, K.J. Zhang, Three-dimensional trajectory design for horizontal well based on optimal switching algorithms, ISA Trans 58 (2015) 348-356 [45] X. Wu, K.J. Zhang, C.Y. Sun, Numerical algorithm for a class of constrained optimal control problems of switched systems, Numer. Algorithms 67 (4) (2014) 771-792 [46] X.M. Liu, S.T. Li, K.J. Zhang, Optimal control of switching time in switched stochastic systems with multi-switching times and different costs, Int. J. Control. 90 (8) (2017) 1604-1611 [47] X.M. Liu, K.J. Zhang, S.T. Li, S.M. Fei, H.K. Wei, Time optimisation problem for switched stochastic systems with multi-switching times, IET Control. Theory Appl. 8 (16) (2014) 1732-1740 [48] MathWorks, Matlab 2010a, Available:https://www.mathworks.com/matlabcentral/profile/authors/2719871. [49] P. Malisani, F. Chaplais, N. Petit, An interior penalty method for optimal control problems with state and input constraints of nonlinear systems, Optim. Control. Appl. Methods 37 (1) (2016) 3-33 |