Chinese Journal of Chemical Engineering ›› 2022, Vol. 45 ›› Issue (5): 171-181.DOI: 10.1016/j.cjche.2021.07.015
Previous Articles Next Articles
Xin Ren1, Li Leng1, Yueqiang Cao1, Jing Zhang1, Xuezhi Duan1, Xueqing Gong2, Jinghong Zhou1, Xinggui Zhou1
Received:
2021-02-08
Revised:
2021-06-26
Online:
2022-06-22
Published:
2022-05-28
Contact:
Yueqiang Cao,E-mail:yqcao@ecust.edu.cn;Jinghong Zhou,E-mail:jhzhou@ecust.edu.cn
Supported by:
Xin Ren1, Li Leng1, Yueqiang Cao1, Jing Zhang1, Xuezhi Duan1, Xueqing Gong2, Jinghong Zhou1, Xinggui Zhou1
通讯作者:
Yueqiang Cao,E-mail:yqcao@ecust.edu.cn;Jinghong Zhou,E-mail:jhzhou@ecust.edu.cn
基金资助:
Xin Ren, Li Leng, Yueqiang Cao, Jing Zhang, Xuezhi Duan, Xueqing Gong, Jinghong Zhou, Xinggui Zhou. Enhanced recycling performance of bimetallic Ir-Re/SiO2 catalyst by amberlyst-15 for glycerol hydrogenolysis[J]. Chinese Journal of Chemical Engineering, 2022, 45(5): 171-181.
Xin Ren, Li Leng, Yueqiang Cao, Jing Zhang, Xuezhi Duan, Xueqing Gong, Jinghong Zhou, Xinggui Zhou. Enhanced recycling performance of bimetallic Ir-Re/SiO2 catalyst by amberlyst-15 for glycerol hydrogenolysis[J]. 中国化学工程学报, 2022, 45(5): 171-181.
Add to citation manager EndNote|Ris|BibTeX
URL: https://cjche.cip.com.cn/EN/10.1016/j.cjche.2021.07.015
[1] K. Chen, M. Tamura, Z. Yuan, Y. Nakagawa, K. Tomishige, One-Pot Conversion of Sugar and Sugar Polyols to n-Alkanes without C-C Dissociation over the Ir-ReOx/SiO2 Catalyst Combined with H-ZSM-5, ChemSusChem, 6 (2013) 613-621 [2] M. Gu, L. Liu, Y. Nakagawa, C. Li, M. Tamura, Z. Shen, X. Zhou, Y. Zhang, K. Tomishige, Selective Hydrogenolysis of Erythritol over Ir-ReOx/Rutile-TiO2 Catalyst, ChemSusChem, 14 (2021) 489-489 [3] S. Liu, Y. Amada, M. Tamura, Y. Nakagawa, K. Tomishige, Performance and characterization of rhenium-modified Rh-Ir alloy catalyst for one-pot conversion of furfural into 1, 5-pentanediol, Catal. Sci. Technol., 4 (2014) 2535-2549 [4] S. Liu, Y. Okuyama, M. Tamura, Y. Nakagawa, A. Imai, K. Tomishige, Production of Renewable Heanols from Mechanocatalytically Depolymerized Cellulose by Using Ir-ReOx/SiO2 catalyst, ChemSusChem, 8 (2015) 628-635 [5] S. Liu, Y. Okuyama, M. Tamura, Y. Nakagawa, A. Imai, K. Tomishige, Catalytic conversion of sorbitol to gasoline-ranged products without external hydrogen over Pt-modified Ir-ReOx/SiO2, Catal. Today, 269 (2016) 122-131 [6] S. Liu, Y. Okuyama, M. Tamura, Y. Nakagawa, A. Imai, K. Tomishige, Selective transformation of hemicellulose (xylan) into n-pentane, pentanols or xylitol over a rhenium-modified iridium catalyst combined with acids, Green Chem., 18 (2016) 165-175 [7] S. Liu, M. Tamura, Y. Nakagawa, K. Tomishige, One-pot conversion of cellulose into n-hexane over the Ir-ReOx/SiO2 catalyst combined with HZSM-5, ACS Sustainable Chem. Eng., 2 (2014) 1819-1827 [8] S.B. Liu, Y. Amada, M. Tamura, Y. Nakagawa, K. Tomishige, One-pot selective conversion of furfural into 1, 5-pentanediol over a Pd-added Ir-ReOx/SiO2 bifunctional catalyst, Green Chem., 16 (2014) 617-626 [9] Y. Nakagawa, S. Liu, M. Tamura, K. Tomishige, Catalytic total hydrodeoxygenation of biomass-derived polyfunctionalized substrates to alkanes, ChemSusChem, 8 (2015) 1114-1132 [10] Y. Nakagawa, M. Tamura, K. Tomishige, Recent development of production technology of diesel-and jet-fuel-range hydrocarbons from inedible biomass, Fuel Process. Technol., 193 (2019) 404-422 [11] S. Bhowmik, S. Darbha, Advances in solid catalysts for selective hydrogenolysis of glycerol to 1, 3-propanediol, Chem. Rev., (2020) 1-65 [12] W. Zhou, Y.J. Zhao, S.P. Wang, X.B. Ma, The effect of metal properties on the reaction routes of glycerol hydrogenolysis over platinum and ruthenium catalysts, Catal. Today, 298 (2017) 2-8 [13] L. Liu, S. Kawakami, Y. Nakagawa, M. Tamura, K. Tomishige, Highly active iridium-rhenium catalyst condensed on silica support for hydrogenolysis of glycerol to 1, 3-propanediol, Appl. Catal. B Environ., 256 (2019) 117775 [14] M. Tamura, Y. Amada, S. Liu, Z. Yuan, Y. Nakagawa, K. Tomishige, Promoting effect of Ru on Ir-ReOx/SiO2 catalyst in hydrogenolysis of glycerol, J. Mol. Catal. A:Chem., 388 (2014) 177-187 [15] M.J. Pan, J.N. Wang, W.Z. Fu, B.X. Chen, J.Q. Lei, W.Y. Chen, X.Z. Duan, D. Chen, G. Qian, X.G. Zhou, Active sites of Pt/CNTs nanocatalysts for aerobic base-free oxidation of glycerol, Green Energy Environ., 5 (2020) 76-82 [16] Y.Y. Ma, J. Gan, M.J. Pan, Y.F. Zhang, W.Z. Fu, X.Z. Duan, W.Y. Chen, D. Chen, G. Qian, X.G. Zhou, Reaction mechanism and kinetics for Pt/CNTs catalyzed base-free oxidation of glycerol, Chem. Eng. Sci., 203 (2019) 228-236 [17] X.Z. Duan, Y.F. Zhang, M.J. Pan, H. Dong, B.X. Chen, Y.Y. Ma, G. Qian, X.G. Zhou, J. Yang, D. Chen, SbOx-promoted pt nanoparticles supported on CNTs as catalysts for base-free oxidation of glycerol to dihydroxyacetone, AIChE J., 64 (2018) 3979-3987 [18] M. Slinn, K. Kendall, C. Mallon, J. Andrews, Steam reforming of biodiesel by-product to make renewable hydrogen, Bioresour. Technol., 99 (2008) 5851-5858 [19] G.X. Yang, H. Yu, F. Peng, H.J. Wang, J. Yang, D.L. Xie, Thermodynamic analysis of hydrogen generation via oxidative steam reforming of glycerol, Renew. Energ., 36 (2011) 2120-2127 [20] S. Liu, M. Tamura, Z. Shen, Y. Zhang, Y. Nakagawa, K. Tomishige, Hydrogenolysis of glycerol with in-situ produced H2 by aqueous-phase reforming of glycerol using Pt-modified Ir-ReOx/SiO2 catalyst, Catal. Today, 303 (2018) 106-116 [21] Y. Nakagawa, Y. Shinmi, S. Koso, K. Tomishige, Direct hydrogenolysis of glycerol into 1, 3-propanediol over rhenium-modified iridium catalyst, J. Catal., 272 (2010) 191-194 [22] C.H. Deng, X.Z. Duan, J.H. Zhou, X.G. Zhou, W.K. Yuan, S.L. Scott, Ir-Re alloy as a highly active catalyst for the hydrogenolysis of glycerol to 1, 3-propanediol, Catal. Sci. Technol., 5 (2015) 1540-1547 [23] W. Zhou, J. Luo, Y. Wang, J.F. Liu, Y.J. Zhao, S.P. Wang, X.B. Ma, WOx domain size, acid properties and mechanistic aspects of glycerol hydrogenolysis over Pt/WOx/ZrO2, Appl. Catal. B Environ., 242 (2019) 410-421 [24] X.Y. Wan, Q. Zhang, M.M. Zhu, Y. Zhao, Y.M. Liu, C.M. Zhou, Y.H. Yang, Y. Cao, Interface synergy between IrOx and H-ZSM-5 in selective C-O hydrogenolysis of glycerol toward 1, 3-propanediol, J. Catal., 375 (2019) 339-350 [25] C.J. Yang, F. Zhang, N. Lei, M. Yang, F. Liu, Z.L. Miao, Y.N. Sun, X.C. Zhao, A.Q. Wang, Understanding the promotional effect of Au on Pt/WO3 in hydrogenolysis of glycerol to 1, 3-propanediol, Chinese J. Catal., 39 (2018) 1366-1372 [26] Y. Nakagawa, K. Mori, K. Chen, Y. Amada, M. Tamura, K. Tomishige, Hydrogenolysis of CO bond over Re-modified Ir catalyst in alkane solvent, Appl. Catal. A, 468 (2013) 418-425 [27] Y. Nakagawa, M. Tamura, K. Tomishige, Catalytic materials for the hydrogenolysis of glycerol to 1, 3-propanediol, J. Mater. Chem. A, 2 (2014) 6688-6702 [28] M. Yang, X.C. Zhao, Y.J. Ren, J. Wang, N. Lei, A.Q. Wang, T. Zhang, Pt/Nb-WOx for the chemoselective hydrogenolysis of glycerol to 1, 3-propanediol:Nb dopant pacifying the over-reduction of WOx supports, Chin. J. Catal, 39 (2018) 1027-1037 [29] L.F. Gong, Y. Lu, Y.J. Ding, R.H. Lin, J.W. Li, W.D. Dong, T. Wang, W.M. Chen, Selective hydrogenolysis of glycerol to 1, 3-propanediol over a Pt/WO3/TiO2/SiO2 catalyst in aqueous media, Appl. Catal., A, 390 (2010) 119-126 [30] J.J. Varghese, L.W. Cao, C. Robertson, Y.H. Yang, L.F. Gladden, A.A. Lapkin, S.H. Mushrif, Synergistic contribution of the acidic metal oxide-metal couple and solvent environment in the selective hydrogenolysis of glycerol:A combined experimental and computational study using ReOx-Ir as the catalyst, ACS Catal., 9 (2018) 485-503 [31] K. Tomishige, Y. Nakagawa, M. Tamura, Taming heterogeneous rhenium catalysis for the production of biomass-derived chemicals, Chin. Chem. Lett., 31 (2020) 1071-1077 [32] L.J. Liu, T. Asano, Y. Nakagawa, M. Tamura, K. Okumura, K. Tomishige, Selective Hydrogenolysis of Glycerol to 1, 3-Propanediol over Rhenium-Oxide-Modified Iridium Nanoparticles Coating Rutile Titania Support, ACS Catal., 9 (2019) 10913-10930 [33] X.C. Zhao, J. Wang, M. Yang, N. Lei, L. Li, B.L. Hou, S. Miao, X.L. Pan, A.Q. Wang, T. Zhang, Selective Hydrogenolysis of Glycerol to 1, 3-Propanediol:Manipulating the Frustrated Lewis Pairs by Introducing Gold to Pt/WOx, ChemSusChem, 10 (2017) 819-824 [34] Q.H. Sun, S. Wang, H.C. Liu, Selective hydrogenolysis of glycerol to propylene glycol on supported Pd catalysts:promoting effects of ZnO and mechanistic assessment of active PdZn alloy surfaces, ACS Catal., 7 (2017) 4265-4275 [35] Y.Y. Sun, Z.S. Cai, X.W. Li, P. Chen, Z.Y. Hou, Selective synthesis of 1, 3-propanediol from glycidol over a carbon film encapsulated Co catalyst, Catal. Sci. Technol., 9 (2019) 5022-5030 [36] C.H. Deng, X.Z. Duan, J.H. Zhou, D. Chen, X.G. Zhou, W.K. Yuan, Size effects of Pt-Re bimetallic catalysts for glycerol hydrogenolysis, Catal. Today, 234 (2014) 208-214 [37] C.H. Deng, L. Leng, X.Z. Duan, J.H. Zhou, X.G. Zhou, W.K. Yuan, Support effect on the bimetallic structure of Ir-Re catalysts and their performances in glycerol hydrogenolysis, J. Mol. Catal. A:Chem., 410 (2015) 81-88 [38] Y. Amada, H. Watanabe, Y. Hirai, Y. Kajikawa, Y. Nakagawa, K. Tomishige, Production of biobutanediols by the hydrogenolysis of erythritol, ChemSusChem, 5 (2012) 1991-1999 [39] K. Ye, Z.W. Zhou, J.Q. Shao, L. Lin, D.F. Gao, N. Ta, R. Si, G.X. Wang, X.H. Bao, In Situ Reconstruction of a Hierarchical Sn-Cu/SnOx Core/Shell Catalyst for High-Performance CO2 Electroreduction, Angew. Chem., Int. Ed., 59 (2020) 4814-4821 [40] X.Y. Long, P. Yin, T. Lei, K.C. Wang, Z.X. Zhan, Methanol electro-oxidation on Cu@Pt/C core-shell catalyst derived from Cu-MOF, Appl. Catal. B Environ., 260 (2020) 118187 [41] S.G. Chen, Z.D. Wei, X.Q. Qi, L.C. Dong, Y.G. Guo, L.J. Wan, Z.G. Shao, L. Li, Nanostructured polyaniline-decorated Pt/C@PANI core-shell catalyst with enhanced durability and activity, J. Am. Chem. Soc., 134 (2012) 13252-13255 [42] K. Chen, K. Mori, H. Watanabe, Y. Nakagawa, K. Tomishige, C-O bond hydrogenolysis of cyclic ethers with OH groups over rhenium-modified supported iridium catalysts, J. Catal., 294 (2012) 171-183 [43] Y.Q. Cao, H. Zhang, S.F. Ji, Z.J. Sui, Z. Jiang, D.S. Wang, F. Zaera, X.G. Zhou, X.Z. Duan, Y.D. Li, Adsorption Site Regulation to Guide Atomic Design of Ni-Ga Catalysts for Acetylene Semi-Hydrogenation, Angew. Chem., 132 (2020) 11744-11749 [44] Y.Q. Cao, Z.J. Sui, Y.A. Zhu, X.G. Zhou, D. Chen, Selective hydrogenation of acetylene over Pd-In/Al2O3 catalyst:promotional effect of indium and composition-dependent performance, ACS Catal., 7 (2017) 7835-7846 [45] M. Armbrüster, K. Kovnir, M. Behrens, D. Teschner, Y. Grin, R. Schlögl, Pd-Ga intermetallic compounds as highly selective semihydrogenation catalysts, J. Am. Chem. Soc., 132 (2010) 14745-14747 [46] Y. Amada, H. Watanabe, M. Tamura, Y. Nakagawa, K. Okumura, K. Tomishige, Structure of ReOx Clusters Attached on the Ir Metal Surface in Ir-ReOx/SiO2 for the Hydrogenolysis Reaction, J. Phys. Chem. C, 116 (2012) 23503-23514 [47] Y. Nakagawa, M. Tamura, K. Tomishige, Perspective on catalyst development for glycerol reduction to C3 chemicals with molecular hydrogen, Res. Chem. Intermed., 44 (2018) 3879-3903 [48] K. Tomishige, Y. Nakagawa, M. Tamura, Selective hydrogenolysis and hydrogenation using metal catalysts directly modified with metal oxide species, Green Chem., 19 (2017) 2876-2924 [49] H. Yu, Y.P. Jiao, N. Li, J.J. Pang, W.T. Li, X.K. Zhang, X. Li, C.S. Li, Au-CeO2 Janus-like nanoparticles fabricated by block copolymer templates and their catalytic activity in the degradation of methyl orange, Appl. Surf. Sci., 427 (2018) 771-778 [50] K.A. Kuttiyiel, K. Sasaki, G.-G. Park, M.B. Vukmirovic, L.J. Wu, Y.M. Zhu, J.G. Chen, R.R. Adzic, Janus structured Pt-FeNC nanoparticles as a catalyst for the oxygen reduction reaction, Chem. Commun., 53 (2017) 1660-1663 [51] R. Tang, S. Zhou, jie, C. Li, xia, R. Chen, L. Zhang, yuan, Z. Zhang, wei, L. Yin, wei, Janus-Structured Co-Ti3C2 MXene Quantum Dots as a Schottky Catalyst for High-Performance Photoelectrochemical Water Oxidation, Adv. Funct. Mater., 30 (2020) 2000637 [52] Y. Amada, Y. Shinmi, S. Koso, T. Kubota, Y. Nakagawa, K. Tomishige, Reaction mechanism of the glycerol hydrogenolysis to 1, 3-propanediol over Ir-ReOx/SiO2 catalyst, Appl. Catal. B Environ., 105 (2011) 117-127 [53] K. Tomishige, Y. Nakagawa, M. Tamura, Design of supported metal catalysts modified with metal oxides for hydrodeoxygenation of biomass-related molecules, Curr. Opin. Green. Sustain. Chem., 22 (2020) 13-21 [54] K. Tomishige, M. Tamura, Y. Nakagawa, Role of Re Species and Acid Cocatalyst on Ir-ReOx/SiO2 in the C-O Hydrogenolysis of Biomass-Derived Substrates, Chem. Rec., 14 (2014) 1041-1054 [55] L. Rout, A. Kumar, R.S. Dhaka, G.N. Reddy, S. Giri, P. Dash, Bimetallic Au-Cu alloy nanoparticles on reduced graphene oxide support:Synthesis, catalytic activity and investigation of synergistic effect by DFT analysis, Appl. Catal., A, 538 (2017) 107-122 [56] G.Y. Bao, J. Bai, C.P. Li, Synergistic effect of the Pd-Ni bimetal/carbon nanofiber composite catalyst in Suzuki coupling reaction, Org. Chem. Front., 6 (2019) 352-361 [57] B. Zugic, L.C. Wang, C. Heine, D.N. Zakharov, B.A. Lechner, E.A. Stach, J. Biener, M. Salmeron, R.J. Madix, C.M. Friend, Dynamic restructuring drives catalytic activity on nanoporous gold-silver alloy catalysts, Nat. Mater., 16 (2017) 558-564 [58] X. Lu, Y.S. Wu, X.L. Yuan, H.L. Wang, An Integrated CO2 Electrolyzer and Formate Fuel Cell Enabled by a Reversibly Restructuring Pb-Pd Bimetallic Catalyst, Angew. Chem., Int. Ed., 58 (2019) 4031-4035 [59] W.T. Luo, Y. Lyu, L.F. Gong, H. Du, T. Wang, Y.J. Ding, Selective hydrogenolysis of glycerol to 1, 3-propanediol over egg-shell type Ir-ReOx catalysts, RSC Adv., 6 (2016) 13600-13608 [60] S.R. Bare, S.D. Kelly, F. D. Vila, E. Boldingh, E. Karapetrova, J. Kas, G.E. Mickelson, F.S. Modica, N. Yang, J.J. Rehr, Experimental (XAS, STEM, TPR, and XPS) and theoretical (DFT) characterization of supported rhenium catalysts, J. Phys. Chem. C, 115 (2011) 5740-5755 [61] E.L. Kunkes, D.A. Simonetti, J.A. Dumesic, W.D. Pyrz, L.E. Murillo, J.G.G. Chen, D.J. Buttrey, The role of rhenium in the conversion of glycerol to synthesis gas over carbon supported platinum-rhenium catalysts, J. Catal., 260 (2008) 164-177 [62] M. Chia, Y.J. Pagán-Torres, D. Hibbitts, Q.H. Tan, H.N. Pham, A.K. Datye, M. Neurock, R.J. Davis, J.A. Dumesic, Selective hydrogenolysis of polyols and cyclic ethers over bifunctional surface sites on rhodium-rhenium catalysts, J. Am. Chem. Soc., 133 (2011) 12675-12689 [63] Y. Nakagawa, X. Ning, Y. Amada, K. Tomishige, Solid acid co-catalyst for the hydrogenolysis of glycerol to 1, 3-propanediol over Ir-ReOx/SiO2, Appl. Catal., A, 433 (2012) 128-134 [64] E. Corbos, X. Courtois, N. Bion, P. Marecot, D. Duprez, Impact of the support oxide and Ba loading on the sulfur resistance and regeneration of Pt/Ba/support catalysts, Appl. Catal. B Environ., 80 (2008) 62-71 [65] Y. Deng, L. An, Sulfate accumulation in commercial Pd-Pt/Al2O3 and Pt/Al2O3 catalysts used for removal of hydrogen from carbon dioxide, Appl. Catal. A, 119 (1994) 13-22 [66] R. Jin, Y. Liu, Z. Wu, H. Wang, T. Gu, Relationship between SO2 poisoning effects and reaction temperature for selective catalytic reduction of NO over Mn-Ce/TiO2 catalyst, Catal. Today, 153 (2010) 84-89 [67] Y.Q. Cao, W.Z. Fu, Z.J. Sui, X.Z. Duan, D. Chen, X.G. Zhou, Kinetics Insights and Active Sites Discrimination of Pd-Catalyzed Selective Hydrogenation of Acetylene, Ind. Eng. Chem. Res., 58 (2019) 1888-1895 [68] W.Y. Chen, J. Ji, X. Feng, X.Z. Duan, G. Qian, P. Li, X.G. Zhou, D. Chen, W.K. Yuan, Mechanistic insight into size-dependent activity and durability in Pt/CNT catalyzed hydrolytic dehydrogenation of ammonia borane, J. Am. Chem. Soc., 136 (2014) 16736-16739 [69] M. Shekhar, J. Wang, W. S. Lee, W.D. Williams, S.M. Kim, E.A. Stach, J.T. Miller, W.N. Delgass, F.H. Ribeiro, Size and support effects for the water-gas shift catalysis over gold nanoparticles supported on model Al2O3 and TiO2, J. Am. Chem. Soc., 134 (2012) 4700-4708 [70] F. Zaera, The surface chemistry of metal-based hydrogenation catalysis, ACS Catal., 7 (2017) 4947-4967 [71] M. Haneda, H. Kudo, Y. Nagao, T. Fujitani, H. Hamada, Enhanced activity of Ba-doped Ir/SiO2 catalyst for NO reduction with CO in the presence of O2 and SO2, Catal. Commun., 7 (2006) 423-426 [72] B. Pholjaroen, N. Li, Y.Q. Huang, L. Li, A.Q. Wang, T. Zhang, Selective hydrogenolysis of tetrahydrofurfuryl alcohol to 1, 5-pentanediol over vanadium modified Ir/SiO2 catalyst, Catal. Today, 245 (2015) 93-99 [73] J.A. Anderson, F.K. Chong, C.H. Rochester, IR study of CO adsorption on Pt, Re and Pt-Re/Al2O3 catalysts before and after coking, J. Mol. Catal. A:Chem., 140 (1999) 65-80 [74] S.T. Thompson, H.H. Lamb, Palladium-Rhenium Catalysts for Selective Hydrogenation of Furfural:Evidence for an Optimum Surface Composition, ACS Catal., 6 (2016) 7438-7447 [75] K.G. Azzam, I.V. Babich, K. Seshan, B.L. Mojet, L. Lefferts, Stable and Efficient Pt-Re/TiO2 catalysts for Water-Gas-Shift:On the Effect of Rhenium, ChemCatChem, 5 (2013) 557-564 [76] F.K. Chong, J.A. Anderson, C.H. Rochester, Effects of Oxidation/Reduction and Oxychlorination/Reduction Cycles on CO Adsorption by Pt-Re/Al2O3 Catalysts, J. Catal., 190 (2000) 327-337 [77] W. Daniell, T. Weingand, H. Knözinger, Redox properties of Re2O7/Al2O3 as investigated by FTIR spectroscopy of adsorbed CO, J. Mol. Catal. A:Chem., 204 (2003) 519-526 [78] B.K. Ly, B. Tapin, M. Aouine, P. Delichere, F. Epron, C. Pinel, C. Especel, M. Besson, Insights into the Oxidation State and Location of Rhenium in Re-Pd/TiO2 Catalysts for Aqueous-Phase Selective Hydrogenation of Succinic Acid to 1, 4-Butanediol as a Function of Palladium and Rhenium Deposition Methods, ChemCatChem, 7 (2015) 2161-2178 [79] X.Y. She, J. Kwak, Hun, J.M. Sun, J.Z. Hu, M.Y. Hu, C.M. Wang, C.H. Peden, Y. Wang, Highly Dispersed and Active ReOX on Alumina-Modified SBA-15 Silica for 2-Butanol Dehydration, ACS Catal., 2 (2012) 1020-1026 [80] M. Vuurman, D. Stufkens, A. Oskam, I. Wachs, Structural determination of surface rhenium oxide on various oxide supports (Al2O3, ZrO2, TiO2 and SiO2), J. Mol. Catal. A:Chem., 76 (1992) 263-285 [81] D.S. Kim, I. Wachs, Surface rhenium oxide-support interaction for supported Re2O7 catalysts, J. Catal., 141 (1993) 419-429 [82] S.G. Mueller, P.J. Stallbaumer, D.A. Slade, S.M. Stagg-Williams, Segregation of Pt and Re During CO2 Reforming of CH4, Catal. Lett., 103 (2005) 69-74 [83] H. Iida, A. Igarashi, Structure characterization of Pt-Re/TiO2 (rutile) and Pt-Re/ZrO2 catalysts for water gas shift reaction at low-temperature, Appl. Catal., A, 303 (2006) 192-198 [84] J.M. Keels, X. Chen, S. Karakalos, C. Liang, J.R. Monnier, J.R. Regalbuto, Aqueous-Phase Hydrogenation of Succinic Acid Using Bimetallic Ir-Re/C Catalysts Prepared by Strong Electrostatic Adsorption, ACS Catal., 8 (2018) 6486-6494 [85] F.F. Tao, S.R. Zhang, L. Nguyen, X.Q. Zhang, Action of bimetallic nanocatalysts under reaction conditions and during catalysis:evolution of chemistry from high vacuum conditions to reaction conditions, Chem. Soc. Rev., 41 (2012) 7980-7993 [86] H.I. Karan, K. Sasaki, K. Kuttiyiel, C.A. Farberow, M. Mavrikakis, R.R. Adzic, Catalytic activity of platinum monolayer on iridium and rhenium alloy nanoparticles for the oxygen reduction reaction, ACS Catal., 2 (2012) 817-824 [87] A. Ruban, H.L. Skriver, J.K. Nørskov, Surface segregation energies in transition-metal alloys, Phys. Rev. B:Condens. Matter Mater. Phys., 59 (1999) 15990 |
[1] | Qiongna Xiao, Yuyan Jiang, Weiqiang Yuan, Jingjing Chen, Haohong Li, Huidong Zheng. Styrene epoxidation catalyzed by polyoxometalate/quaternary ammonium phase transfer catalysts: The effect of cation size and catalyst deactivation mechanism [J]. Chinese Journal of Chemical Engineering, 2023, 55(3): 192-201. |
[2] | Guoxiao Cai, Wei Xiong, Susu Zhou, Pingle Liu, Yang Lv, Fang Hao, Hean Luo, ChangYi Kong. A multi-functional Ru Mo bimetallic catalyst for ultra-efficient C3 alcohols production from liquid phase hydrogenolysis of glycerol [J]. Chinese Journal of Chemical Engineering, 2022, 51(11): 199-215. |
[3] | Yuan Wang, Yang Xiao, Guomin Xiao. Sustainable value-added C3 chemicals from glycerol transformations: A mini review for heterogeneous catalytic processes [J]. Chinese Journal of Chemical Engineering, 2019, 27(7): 1536-1542. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||