Chinese Journal of Chemical Engineering ›› 2022, Vol. 45 ›› Issue (5): 182-193.DOI: 10.1016/j.cjche.2021.05.015
Previous Articles Next Articles
Fu Yang1, Ruyi Wang2, Shijian Zhou2, Xuyu Wang1, Yan Kong2, Shuying Gao2
Received:
2021-01-10
Revised:
2021-05-09
Online:
2022-06-22
Published:
2022-05-28
Contact:
Yan Kong,E-mail:kongy36@njtech.edu.cn;Shuying Gao,E-mail:gao415127@163.com
Supported by:
Fu Yang1, Ruyi Wang2, Shijian Zhou2, Xuyu Wang1, Yan Kong2, Shuying Gao2
通讯作者:
Yan Kong,E-mail:kongy36@njtech.edu.cn;Shuying Gao,E-mail:gao415127@163.com
基金资助:
Fu Yang, Ruyi Wang, Shijian Zhou, Xuyu Wang, Yan Kong, Shuying Gao. Mesopore-encaged V-Mn oxides: Progressive insertion approach triggering reconstructed active sites to enhance catalytic oxidative desulfuration[J]. Chinese Journal of Chemical Engineering, 2022, 45(5): 182-193.
Fu Yang, Ruyi Wang, Shijian Zhou, Xuyu Wang, Yan Kong, Shuying Gao. Mesopore-encaged V-Mn oxides: Progressive insertion approach triggering reconstructed active sites to enhance catalytic oxidative desulfuration[J]. 中国化学工程学报, 2022, 45(5): 182-193.
[1] M. Zhang, J. Liu, H. Li, Y. Wei, Y. Fu, W. Liao, L. Zhu, G. Chen, W. Zhu, H. Li, Tuning the electrophilicity of vanadium-substituted polyoxometalate based ionic liquids for high-efficiency aerobic oxidative desulfurization, Appl. Catal. B:Environ., 271 (2020) 118936 [2] J. Zhang, M. Zhang, J. Liu, C. Wang, H. Li, J. Pang, W. Zhu, H. Li, Fast heterogeneous oxidative desulfurization of dibenzothiophene from ionic liquids supported urchin-liked meso-silica, Mater. Express, 10 (2020) 199-205 [3] M.I.S. de Mello, E.V. Sobrinho, V.L.S.T. da Silva, S.B.C. Pergher, V or Mn zeolite catalysts for the oxidative desulfurization of diesel fractions using dibenzothiophene as a probe molecule:Preliminary study, Mol. Catal., 482 (2020) 100495 [4] C. Shi, W. Wang, N. Liu, X. Xu, D. Wang, M. Zhang, P. Sun, T.J.C.c. Chen, Low temperature oxidative desulfurization with hierarchically mesoporous titaniumsilicate Ti-SBA-2 single crystals, Chem. Commun., 51 (2015) 11500-11503 [5] H. Wang, M. Tang, F. Shi, R. Ding, L. Wang, J. Wu, X. Li, Z. Liu, B. Lv, Amorphous Cr2WO6-modified WO3 nanowires with a large specific surface area and rich lewis acid sites:a highly efficient catalyst for oxidative desulfurization, ACS Appl. Mater. Interfaces, 12 (2020) 38140-38152 [6] Y. Shiraishi, T. Naito, T. Hirai, Vanadosilicate molecular sieve as a catalyst for oxidative desulfurization of light oil, Ind. Eng. Chem. Res., 42 (2003) 6034-6039 [7] M.R. Maurya, A. Arya, A. Kumar, M.L. Kuznetsov, F. Avecilla, J. Costa Pessoa, Polymer-bound oxidovanadium(IV) and dioxidovanadium(V) complexes as catalysts for the oxidative desulfurization of model fuel diesel, Inorg. Chem., 49 (2010) 6586-6600 [8] K. Chen, N. Liu, M. Zhang, D. Wang, Oxidative desulfurization of dibenzothiophene over monoclinic VO2 phase-transition catalysts, Appl. Catal. B:Environ., 212 (2017) 32-40 [9] L. Cedeño-Caero, H. Gomez-Bernal, A. Fraustro-Cuevas, H.D. Guerra-Gomez, R. Cuevas-Garcia, Oxidative desulfurization of synthetic diesel using supported catalysts, Catal. Today, 133-135 (2008) 244-254 [10] L. Rivoira, J. Juárez, H. Falcón, M. Gómez Costa, O. Anunziata, A. Beltramone, Vanadium and titanium oxide supported on mesoporous CMK-3 as new catalysts for oxidative desulfurization, Catal. Today, 282 (2017) 123-132 [11] C. Wang, Y. Qiu, H. Wu, W. Yang, Q. Zhu, Z. Chen, S. Xun, W. Zhu, H. Li, Construction of 2D-2D V2O5/BNNS nanocomposites for improved aerobic oxidative desulfurization performance, Fuel, 270 (2020) 117498 [12] S. Zhou, C. Song, W. Kong, B. Wang, Y. Kong, Effects of synergetic effect between Co and γ-Fe2O3 in confined silica matrix of MCM-41 on the formation of free radicals for the advanced oxidation technology, Appl. Surf. Sci., 527 (2020) 146853 [13] F. Yang, J. Tang, Catalytic upgrading of renewable levulinic acid to levulinate esters using perchloric acid decorated nanoporous silica gels, ChemistrySelect, 4 (2019) 1403-1409 [14] A. Akbari, M. Omidkhah, J.T. Darian, Investigation of process variables and intensification effects of ultrasound applied in oxidative desulfurization of model diesel over MoO3/Al2O3 catalyst, Ultrason. Sonochem., 21 (2014) 692-705 [15] R. Ghubayra, C. Nuttall, S. Hodgkiss, M. Craven, E.F. Kozhevnikova, I.V. Kozhevnikov, Oxidative desulfurization of model diesel fuel catalyzed by carbon-supported heteropoly acids, Appl. Catal. B:Environ., 253 (2019) 309-316 [16] J.C. Lorena P. Rivoira, Experimental design optimization of the ODS of DBT using vanadium oxide supported on mesoporous Ga-SBA-15, Catal. Today, 1 (2020) 68-80 [17] A. Teimouri, M. Mahmoudsalehi, H. Salavati, Catalytic oxidative desulfurization of dibenzothiophene utilizing molybdenum and vanadium oxides supported on MCM-41, Int. J. Hydrogen Energ., 43 (2018) 14816-14833 [18] C. Tang, J. Sun, X. Yao, Y. Cao, L. Liu, C. Ge, F. Gao, L. Dong, Efficient fabrication of active CuO-CeO2/SBA-15 catalysts for preferential oxidation of CO by solid state impregnation, Appl. Catal. B:Environ., 146 (2014) 201-212 [19] G. Lee, B.S. Kwak, S.-M. Park, M. Kang, Hydrogen generation over 30CoxVy/70SBA-15 mesoporous materials well-balanced by Co and V co-doping, Int. J. Hydrogen Energ., 40 (2015) 8485-8497 [20] F. Yang, J. Tang, R. Ou, Z. Guo, S. Gao, Y. Wang, X. Wang, L. Chen, A. Yuan, Fully catalytic upgrading synthesis of 5-Ethoxymethylfurfural from biomass-derived 5-hydroxymethylfurfural over recyclable layered-niobium-molybdate solid acid, Appl. Catal. B:Environ., 256 (2019) 117786 [21] F. Yang, S. Gao, Y. Ding, S. Tang, H. Chen, J. Chen, J. Liu, Z. Yang, X. Hu, A. Yuan, Excellent porous environmental nanocatalyst:tactically integrating size-confined highly active MnOx in nanospaces of mesopores enables the promotive catalytic degradation efficiency of organic contaminants, New J. Chem., 43 (2019) 19020-19034 [22] Y.F. Zhu, Y. Fang, L. Borchardt, S. Kaskel, PEGylated hollow mesoporous silica nanoparticles as potential drug delivery vehicles, Micropor. Mesopor. Mater., 141 (2011) 199-206 [23] F. Yang, L. Zhou, S. Gao, X. Wang, J. Chen, A. Yuan, E.H. Ang, Combining two active states of FeOx in-situ in molecular sieve to deliver enhanced catalytic activity via creating special configuration and synergy, J. Alloys Compd., 844 (2020) 156137 [24] T.R. Pauly, Y. Liu, T.J. Pinnavaia, S.J.L. Billinge, T.P. Rieker, Textural mesoporosity and the catalytic activity of mesoporous molecular sieves with wormhole framework structures, J. Am. Chem. Soc., 121 (1999) 8835-8842 [25] F. Yang, S. Zhou, S. Gao, X. Liu, S. Long, Y. Kong, In situ embedding of ultra-fine nickel oxide nanoparticles in HMS with enhanced catalytic activities of styrene epoxidation, Micropor. Mesopor. Mater., 238 (2017) 69-77 [26] L. Hu, B. Yue, X. Chen, H. He, Direct hydroxylation of benzene to phenol on Cu-V bimetal modified HMS catalysts, Catal. Commun., 43 (2014) 179-183 [27] F. Yang, S. Ding, H. Song, N. Yan, Single-atom Pd dispersed on nanoscale anatase TiO2 for the selective hydrogenation of phenylacetylene, Sci. China Mater., 63 (2020) 982-992 [28] W.J. Wang, Y.W. Chen, M.D. Chou, Hexagonal mesoporous silica with noodle-like shape, J. Porous Mater., 11 (2004) 71-78 [29] Z.H. Luan, J. Xu, H.Y. He, J. Klinowski, L. Kevan, Synthesis and spectroscopic characterization of vanadosilicate mesoporous MCM-41 molecular sieves, J. Phys. Chem., 100 (1996) 19595-19602 [30] G.N. Barbosa, T.C.O. Mac Leod, D.F.C. Guedes, M.D. Assis, H.P. Oliveira, Preparation, characterization and catalytic studies of V2O5-SiO2 xerogel composite, J. Sol-Gel Sci. Technol., 46 (2008) 99-105 [31] E. Caponetti, A. Minoja, M.L. Saladino, A. Spinella, Characterization of Nd-MCM-41 obtained by impregnation, Micropor. Mesopor. Mater., 113 (2008) 490-498 [32] F. Yang, S. Gao, C. Xiong, S. Long, X. Li, T. Xi, Y. Kong, Direct templating assembly route for the preparation of highly-dispersed vanadia species encapsulated in mesoporous MCM-41 channel, RSC Adv., 5 (2015) 72099-72106 [33] B. Solsona, T. Blasco, J.M.L. Nieto, M.L. Pena, F. Rey, A. Vidal-Moya, Vanadium oxide supported on mesoporous MCM-41 as selective catalysts in the oxidative dehydrogenation of alkanes, J. Catal., 203 (2001) 443-452 [34] J. George, S. Shylesh, A.P. Singh, Vanadium-containing ordered mesoporous silicas:synthesis, characterization and catalytic activity in the hydroxylation of biphenyl, Appl. Catal. A-Gen., 290 (2005) 148-158 [35] L. Rivoira, M.L. Martínez, O. Anunziata, A. Beltramone, Vanadium oxide supported on mesoporous SBA-15 modified with Al and Ga as a highly active catalyst in the ODS of DBT, Micropor. Mesopor. Mater., 254 (2017) 96-113 [36] K.M. Parida, S.S. Dash, S. Singha, Structural properties and catalytic activity of Mn-MCM-41 mesoporous molecular sieves for single-step amination of benzene to aniline, Appl. Catal. A-Gen., 351 (2008) 59-67 [37] F. Su-Jiao, Y.U.E. Bin, W. Yu, Y.E. Lin, H.E. He-Yong, Hydroxylation of benzene over v-hms catalysts with the addition of fe as the second metal component, Acta Phys-Chim. Sin., 27 (2011) 2881-2886 [38] Q. Tang, S. Hu, Y. Chen, Z. Guo, Y. Hu, Y. Chen, Y. Yang, Highly dispersed manganese oxide catalysts grafted on SBA-15:Synthesis, characterization and catalytic application in trans-stilbene epoxidation, Micropor. Mesopor. Mater., 132 (2010) 501-509 [39] C. Hess, U. Wild, R. Schloegl, The mechanism for the controlled synthesis of highly dispersed vanadia supported on silica SBA-15, Micropor. Mesopor. Mater., 95 (2006) 339-349 [40] A. Moses Ezhil Raj, S.G. Victoria, V.B. Jothy, C. Ravidhas, J. Wollschläger, M. Suendorf, M. Neumann, M. Jayachandran, C. Sanjeeviraja, XRD and XPS characterization of mixed valence Mn3O4 hausmannite thin films prepared by chemical spray pyrolysis technique, Appl. Surf. Sci., 256 (2010) 2920-2926 [41] J. Liu, T. Chen, P. Jian, L. Wang, Hierarchical hollow nickel silicate microflowers for selective oxidation of styrene, J. Colloid Interf. Sci., 553 (2019) 606-612 [42] F. Yang, B. Wang, S. Zhou, S. Long, X. Liu, Y. Kong, Micropore-enriched CuO-based silica catalyst directly prepared by anionic template-induced method and its boosting catalytic activity in olefins epoxidation, Micropor. Mesopor. Mater., 246 (2017) 215-224 [43] Y. Du, P. Yang, S. Zhou, J. Li, X. Du, J. Lei, Direct synthesis of ordered meso/macrostructured phosphotungstic acid/SiO2 by EISA method and its catalytic performance of fuel oil, Mater. Res. Bull., 97 (2018) 42-48 [44] M.A. Safa, X. Ma, Oxidation kinetics of dibenzothiophenes using cumene hydroperoxide as an oxidant over MoO3/Al2O3 catalyst, Fuel, 171 (2016) 238-246 [45] S. Liu, F. Zhao, H. Sun, X. Liu, B. Cui, Iron promotion of V-HMS mesoporous catalysts for ultra-deep oxidative desulfurization, Appl. Organomet. Chem., 32 (2018) e4082 [46] D. Xu, W. Zhu, H. Li, J. Zhang, F. Zou, H. Shi, Y. Yan, Oxidative desulfurization of fuels catalyzed by V2O5 in ionic liquids at room temperature, Energ. Fuel., 23 (2009) 5929-5933 [47] Z. Yu, X. Huang, S. Xun, M. He, L. Zhu, L. Wu, M. Yuan, W. Zhu, H. Li, Synthesis of carbon nitride supported amphiphilic phosphotungstic acid based ionic liquid for deep oxidative desulfurization of fuels, J. Mol. Liq., 308 (2020) 113059 [48] Y. Cao, H. Wang, R. Ding, L. Wang, Z. Liu, B. Lv, Highly efficient oxidative desulfurization of dibenzothiophene using Ni modified MoO3 catalyst, Appl. Catal. A-Gen., 589 (2020) 117308 [49] L. Chen, J.-T. Ren, Z.-Y. Yuan, Atomic heterojunction-induced electron interaction in P-doped g-C3N4 nanosheets supported V-based nanocomposites for enhanced oxidative desulfurization, Chem. Eng. J., 387 (2020) 124164 [50] F. Wang, G. Wang, H. Cui, W. Sun, T. Wang, Preparation of metallophthalocyanine functionalized magnetic silica nanotubes and its application in ultrasound-assisted oxidative desulfurization of benzothiophene, Mater. Res. Bull., 63 (2015) 181-186 |
[1] | Wensheng Li, Liangyuan Qi, Daolin Ye, Wei Cai, Weiyi Xing. Facile modification of aluminum hypophosphate and its flame retardancy for polystyrene [J]. Chinese Journal of Chemical Engineering, 2023, 60(8): 90-98. |
[2] | Jing Huang, Honghui Cai, Qian Zhao, Yunpeng Zhou, Haibo Liu, Jing Wang. Dual-functional pyrene implemented mesoporous silicon material used for the detection and adsorption of metal ions [J]. Chinese Journal of Chemical Engineering, 2023, 60(8): 108-117. |
[3] | Peipei Ai, Huiqing Jin, Jie Li, Xiaodong Wang, Wei Huang. Ultra-stable Cu-based catalyst for dimethyl oxalate hydrogenation to ethylene glycol [J]. Chinese Journal of Chemical Engineering, 2023, 60(8): 186-193. |
[4] | Hui Jiang, Zijian Zhao, Ning Yu, Yi Qin, Zhengwei Luo, Wenhua Geng, Jianliang Zhu. Synthesis, characterization, and performance comparison of boron using adsorbents based on N-methyl-D-glucosamine [J]. Chinese Journal of Chemical Engineering, 2023, 59(7): 16-31. |
[5] | Sufei Wang, Mengjie Hao, Danyang Xiao, Tianmiao Zhang, Hua Li, Zhongshan Chen. Synthesis of porous carbon nanomaterials and their application in tetracycline removal from aqueous solutions [J]. Chinese Journal of Chemical Engineering, 2023, 59(7): 200-209. |
[6] | Shanghong Ma, Haitao Zhang, Jianbo Qu, Xiuzhong Zhu, Qingfei Hu, Jianyong Wang, Peng Ye, Futao Sai, Shiwei Chen. Preparation of waterborne polyurethane/β-cyclodextrin composite nanosponge by ion condensation method and its application in removing of dyes from wastewater [J]. Chinese Journal of Chemical Engineering, 2023, 58(6): 124-136. |
[7] | Haike Li, Xindong Li, Guozai Ouyang, Lang Li, Zhaohuang Zhong, Meng Cai, Wenhao Li, Wanfu Huang. Tannic acid/Fe3+ interlayer for preparation of high-permeability polyetherimide organic solvent nanofiltration membranes for organic solvent separation [J]. Chinese Journal of Chemical Engineering, 2023, 57(5): 17-29. |
[8] | Bin Lin, Wenyao Chen, Nan Song, Zhihua Zhang, Qianhong Wang, Wei Du, Xinggui Zhou, Xuezhi Duan. Mechanistic insights into propylene oxidation to acrolein over gold catalysts [J]. Chinese Journal of Chemical Engineering, 2023, 57(5): 39-49. |
[9] | Yaqiao Liu, Shuozhen Hu, Xinsheng Zhang, Shigang Sun. Investigation of photoelectrocatalytic degradation mechanism of methylene blue by α-Fe2O3 nanorods array [J]. Chinese Journal of Chemical Engineering, 2023, 57(5): 162-172. |
[10] | Aneela Sabir, Wail Falath, Muhammad Shafiq, Nafisa Gull, Maria Wasim, Karl I. Jacob. Effective desalination and anti-biofouling performance via surface immobilized MWCNTs on RO membrane [J]. Chinese Journal of Chemical Engineering, 2023, 56(4): 33-45. |
[11] | Yuhan Zhu, Jia Wei, Jun Li. Decontamination of Cr(VI) from water using sewage sludge-derived biochar: Role of environmentally persistent free radicals [J]. Chinese Journal of Chemical Engineering, 2023, 56(4): 97-103. |
[12] | Mengting Liu, Xuexue Dong, Zengjing Guo, Aihua Yuan, Shuying Gao, Fu Yang. Enabling tandem oxidation of benzene to benzenediol over integrated neighboring V-Cu oxides in mesoporous silica [J]. Chinese Journal of Chemical Engineering, 2023, 55(3): 236-245. |
[13] | Zhongqi Ren, Jie Wang, Hewei Zhang, Fan Zhang, Shichao Tian, Zhiyong Zhou. Adsorption of rubidium ion from aqueous solution by surface ion imprinted materials [J]. Chinese Journal of Chemical Engineering, 2023, 54(2): 1-10. |
[14] | An Wang, Zhongyu Hou. Improving the energy efficiency of surface dielectric barrier discharge devices for plasma nitric oxide conversion utilizing active flow control [J]. Chinese Journal of Chemical Engineering, 2023, 53(1): 270-279. |
[15] | Ting He, Songhong Yu, Jinhui He, Dejian Chen, Jie Li, Hongjun Hu, Xingrui Zhong, Yawei Wang, Zhaohui Wang, Zhaoliang Cui. Membranes for extracorporeal membrane oxygenator (ECMO): History, preparation, modification and mass transfer [J]. Chinese Journal of Chemical Engineering, 2022, 49(9): 46-75. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||