[1] X. Su, C.X. Wang, X.Y. Lan, H.J. Pei, X.Y. Mao, J.S. Gao, Flow of high solids density suspensions in an 18 m high circulating fluidized bed, Ind. Eng. Chem. Res. 59 (3) (2020) 1336-1349 [2] Z.Y. Wang, Z.H. Cheng, Y.T. Fang, J.J. Huang, Z.H. Hao, Y. Wang, Hydrodynamic characteristics of multi-stage conversion fluidized bed (MFB), Fuel Process. Technol. 115 (2013) 99-109 [3] M.Z. Qi, S. Barghi, J. Zhu, Detailed hydrodynamics of high flux gas-solid flow in a circulating turbulent fluidized bed, Chem. Eng. J. 209 (2012) 633-644 [4] X.L. Zhu, Q. Geng, G.W. Wang, C.Y. Li, C.H. Yang, Hydrodynamics and catalytic reaction inside a novel multi-regime riser, Chem. Eng. J. 246 (2014) 150-159 [5] G.P. Wu, Y. He, W. Chen, Hydrodynamics of activated char in a novel multistage circulating fluidized bed for dry desulfurization, Chem. Eng. J. 351 (2018) 1104-1114 [6] J.Q. Gan, H. Zhao, A.S. Berrouk, C.H. Yang, H.H. Shan, Numerical simulation of hydrodynamics and cracking reactions in the feed mixing zone of a multiregime gas-solid riser reactor, Ind. Eng. Chem. Res. 50 (20) (2011) 11511-11520 [7] J. Zhu, Circulating turbulent fluidization-A new fluidization regime or just a transitional phenomenon, Particuology 8 (6) (2010) 640-644 [8] Q. Geng, X.L. Zhu, J. Yang, X.H. You, Y.B. Liu, C.Y. Li, Flow regime identification in a novel circulating-turbulent fluidized bed, Chem. Eng. J. 244 (2014) 493-504 [9] X.B. Qi, H.Y. Zhu, J. Zhu, Demarcation of a new circulating turbulent fluidization regime, AIChE J. 55 (3) (2009) 594-611 [10] A.S. Issangya, J.R. Grace, D.R. Bai, J.X. Zhu, Further measurements of flow dynamics in a high-density circulating fluidized bed riser, Powder Technol. 111 (1-2) (2000) 104-113 [11] L.M. Pan, M.H. Zhang, P. Ju, H. He, M. Ishii, Vertical co-current two-phase flow regime identification using fuzzy C-means clustering algorithm and ReliefF attribute weighting technique, Int. J. Heat Mass Transf. 95 (2016) 393-404 [12] K. De Kerpel, S. De Schampheleire, T. De Keulenaer, M. De Paepe, Two-phase flow regime assignment based on wavelet features of a capacitance signal, Int. J. Heat Fluid Flow 56 (2015) 317-323 [13] C.H. Wang, Z.P. Zhong, R. Li, J.Q. E, Recognition of the flow regimes in the spouted bed based on fuzzy C-means clustering, Powder Technol. 205 (1-3) (2011) 201-207. [14] S.A. Mingoti, J.O. Lima, Comparing SOM neural network with Fuzzy C-means, K-means and traditional hierarchical clustering algorithms, Eur. J. Oper. Res. 174 (3) (2006) 1742-1759 [15] S. Ghosh, D.K. Pratihar, B. Maiti, P.K. Das, Automatic classification of vertical counter-current two-phase flow by capturing hydrodynamic characteristics through objective descriptions, Int. J. Multiph. Flow 52 (2013) 102-120 [16] A.A. Sarbanha, S. Movahedirad, M. Ehsani, On the hydrodynamics of a pseudo two-dimensional two-zone gas-solid fluidized bed, Chem. Eng. J. 350 (2018) 971-981 [17] F. Karimi, M. Haghshenasfard, R. Sotudeh-Gharebagh, R. Zarghami, N. Mostoufi, Multiscale characterization of nanoparticles in a magnetically assisted fluidized bed, Particuology 51 (2020) 64-71 [18] G.Z. Qiu, J.M. Ye, H.G. Wang, W.Q. Yang, Investigation of flow hydrodynamics and regime transition in a gas-solids fluidized bed with different riser diameters, Chem. Eng. Sci. 116 (2014) 195-207 [19] S. Nedeltchev, New methods for flow regime identification in bubble columns and fluidized beds, Chem. Eng. Sci. 137 (2015) 436-446 [20] Y.F. Zhou, L. Yang, Y.J. Lu, X.Y. Hu, X. Luo, H.B. Chen, Flow regime identification in gas-solid two-phase fluidization via acoustic emission technique, Chem. Eng. J. 334 (2018) 1484-1492 [21] M. Lungu, J. Siame, J.Y. Sun, L. Mukosha, J.D. Wang, Y.R. Yang, Characterization of fluidization regimes and their transition in gas-solid fluidization by Hilbert-Huang transform, Ind. Eng. Chem. Res. 59 (2) (2020) 883-896 [22] W.L. Li, W.Q. Zhong, B.S. Jin, R. Xiao, T.T. He, Flow regime identification in a three-phase bubble column based on statistical, Hurst, Hilbert-Huang transform and Shannon entropy analysis, Chem. Eng. Sci. 102 (2013) 474-485 [23] S.M. Okhovat-Alavian, J. Behin, N. Mostoufi, Investigating the flow structures in semi-cylindrical bubbling fluidized bed using pressure fluctuation signals, Adv. Powder Technol. 30 (6) (2019) 1247-1256 [24] J.R. van Ommen, J.C. Schouten, M.L.M. vander Stappen, C.M. van den Bleek, Response characteristics of probe-transducer systems for pressure measurements in gas-solid fluidized beds:how to prevent pitfalls in dynamic pressure measurements, Powder Technol. 106 (3) (1999) 199-218 [25] N.E. Huang, Z. Shen, S.R. Long, M.C. Wu, H.H. Shih, Q. Zheng, N.C. Yen, C.C. Tung, H.H. Liu, The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis, Proc. R. Soc. Lond. A 454 (1971) (1998) 903-995 [26] J.C. Bezdek, R. Ehrlich, W. Full, FCM:The fuzzy C-means clustering algorithm, Comput. Geosci. 10 (2-3) (1984) 191-203 [27] M. Zare, M. Koch, Groundwater level fluctuations simulation and prediction by ANFIS- and hybrid Wavelet-ANFIS/Fuzzy C-Means (FCM) clustering models:Application to the Miandarband plain, J. Hydro-Environ. Res. 18 (2018) 63-76 [28] F. Johnsson, R.C. Zijerveld, J.C. Schouten, C.M. van den Bleek, B. Leckner, Characterization of fluidization regimes by time-series analysis of pressure fluctuations, Int. J. Multiph. Flow 26 (4) (2000) 663-715 [29] O.A. Jaiboon, B. Chalermsinsuwan, L. Mekasut, P. Piumsomboon, Effect of flow pattern on power spectral density of pressure fluctuation in various fluidization regimes, Powder Technol. 233 (2013) 215-226 [30] D. Bai, A.S. Issangya, J.R. Grace, Characteristics of gas-fluidized beds in different flow regimes, Ind. Eng. Chem. Res. 38 (3) (1999) 803-811 [31] M. Lungu, H.T. Wang, J.Y. Sun, J.D. Wang, Y.R. Yang, F.Q. Chen, J. Siame, On coherent structures in gas-solid fluidization, Chem. Eng. Res. Des. 153 (2020)146-161 [32] J. Xiang, Q.H. Li, Z.C. Tan, Y.G. Zhang, Characterization of the flow in a gas-solid bubbling fluidized bed by pressure fluctuation, Chem. Eng. Sci. 174 (2017) 93-103 [33] X.Y. Wang, Z.P. Zhong, H. Wang, Z.Y. Wang, Application of Hilbert-Huang transformation in fluidized bed with two-component (biomass particles and quartz sands) mixing flow, Korean J. Chem. Eng. 32 (1) (2015) 43-50 [34] A. Chehbouni, J. Chaouki, C. Guy, D. Klvana, Characterization of the flow transition between bubbling and turbulent fluidization, Ind. Eng. Chem. Res. 33 (8) (1994) 1889-1896 [35] M.F. Llop, N. Gascons, Multiresolution analysis of gas fluidization by empirical mode decomposition and recurrence quantification analysis, Int. J. Multiph. Flow 105 (2018) 170-184 [36] J.Y. Sun, Y. Yan, Non-intrusive characterisation of particle cluster behaviours in a riser through electrostatic and vibration sensing, Chem. Eng. J. 323 (2017) 381-395 [37] X.L. Xie, G. Beni, A validity measure for fuzzy clustering, IEEE Trans. Pattern Anal. Mach. Intell. 13 (8) (1991) 841-847 [38] J. Adánez, L.F. de Diego, P. Gayán, Transport velocities of coal and sand particles, Powder Technol. 77 (1) (1993) 61-68 |