Chinese Journal of Chemical Engineering ›› 2020, Vol. 28 ›› Issue (6): 1522-1532.DOI: 10.1016/j.cjche.2020.03.028
• Fluid Dynamics and Transport Phenomena • Previous Articles Next Articles
Davood Toghraie1, Ramin Mashayekhi2, Mohammadreza Niknejadi1, Hossein Arasteh3
Received:
2019-10-11
Revised:
2020-02-01
Online:
2020-07-29
Published:
2020-06-28
Contact:
Davood Toghraie
Davood Toghraie1, Ramin Mashayekhi2, Mohammadreza Niknejadi1, Hossein Arasteh3
通讯作者:
Davood Toghraie
Davood Toghraie, Ramin Mashayekhi, Mohammadreza Niknejadi, Hossein Arasteh. Hydrothermal performance analysis of various surface roughness configurations in trapezoidal microchannels at slip flow regime[J]. Chinese Journal of Chemical Engineering, 2020, 28(6): 1522-1532.
Davood Toghraie, Ramin Mashayekhi, Mohammadreza Niknejadi, Hossein Arasteh. Hydrothermal performance analysis of various surface roughness configurations in trapezoidal microchannels at slip flow regime[J]. 中国化学工程学报, 2020, 28(6): 1522-1532.
Add to citation manager EndNote|Ris|BibTeX
URL: https://cjche.cip.com.cn/EN/10.1016/j.cjche.2020.03.028
[1] M. Hangi, M. Bahiraei, A. Rahbari, Forced convection of a temperature-sensitive ferrofluid in presence of magnetic field of electrical current-carrying wire:Atwophase approach, Adv. Powder Technol. 29(9) (2018) 2168-2175. [2] M. Bahiraei, M. Hangi, A. Rahbari, A two-phase simulation of convective heat transfer characteristics of water-Fe3O4ferrofluid in a square channel under the effect of permanent magnet, Appl. Therm. Eng. 147(2019) 991-997. [3] M. Shahidi, M.R. Aligoodarz, M.A. Akhavan-behabadi, S. Foroutani, A. Rahbari, Experimental and numerical invesitgation on turbulent flow of mwcnt-water nanofluid inside vertical coiled wire inserted tubes, Therm. Sci. 22(1) (2018) 125-136. [4] S. Foroutani, A. Rahbari, Numerical investigation of laminar forced convection heat transfer in rectangular channels with different block geometries using nanofluids, Therm. Sci. 21(5) (2017) 2129-2138. [5] G.K. Reddy, K. Yarrakula, C.S.K. Raju, A. Rahbari, Mixed convection analysis of variable heat source/sink on MHD Maxwell, Jeffrey, and Oldroyd-B nanofluids over a cone with convective conditions using Buongiorno's model, J. Therm. Anal. Calorim. 132(3) (2018) 1995-2002. [6] M. Fakour, A. Rahbari, E. Khodabandeh, D.D. Ganji, Nanofluid thin film flow and heat transfer over an unsteady stretching elastic sheet by LSM, J. Mech. Sci. Technol. 32(1) (2018) 177-183. [7] H. Bakhshi, E. Khodabandeh, O. Akbari, D. Toghraie, M. Joshaghani, A. Rahbari, Investigation of laminar fluid flow and heat transfer of nanofluid in trapezoidal microchannel with different aspect ratios, Int. J. Numer. Methods Heat Fluid Flow 29(5) (2019) 1680-1698. [8] Z. Tian, A. Abdollahi, M. Shariati, A. Amindoust, et al., Turbulent flows in a spiral double-pipe heat exchanger, Int. J. Numer. Methods Heat Fluid Flow 30(1) (2019) 39-53. [9] H.H. Afrouzi, M. Ahmadian, M. Hosseini, H. Arasteh, D. Toghraie, S. Rostami, Simulation of blood flow in arteries with aneurysm:Lattice Boltzmann Approach (LBM), Comput. Methods Prog. Biomed. (2020) 105312. [10] L. Wei, H. Arasteh, A. Parsian, M. Taghipour, R. Mashayekhi, I. Tlili, Locally weighted moving regression:Anon-parametric method for modeling nanofluid features of dynamic viscosity, Phys. A Stat. Mech. its Appl. (2020) 124124. [11] S.A. Schaaf, P.L. Chambré, Flow of rarefied gases, Princeton Aeronautical Paperbacks, Vol. 8, Princeton University Press, Princeton, New Jersey, 1961. [12] S. Colin, P. Lalonde, R. Caen, Validation of a second-order slip flow model in rectangular microchannels, Heat Transf. Eng. 25(3) (2004) 23-30. [13] A. Karimipour, A.H. Nezhad, A. D'Orazio, E. Shirani, Investigation of the gravity effects on the mixed convection heat transfer in a microchannel using lattice Boltzmann method, Int. J. Therm. Sci. 54(2012) 142-152. [14] Q. Gravndyan, et al., The effect of aspect ratios of rib on the heat transfer and laminar water/TiO2 nanofluid flow in a two-dimensional rectangular microchannel, J. Mol. Liq. 236(2017) 254-265. [15] O. Rezaei, O.A. Akbari, A. Marzban, D. Toghraie, F. Pourfattah, R. Mashayekhi, The numerical investigation of heat transfer and pressure drop of turbulent flow in a triangular microchannel, Phys. E Low-Dimensional Syst. Nanostructures 93(2017) 179-189. [16] A. Behnampour, et al., Analysis of heat transfer and nanofluid fluid flow in microchannels with trapezoidal, rectangular and triangular shaped ribs, Phys. ELow-Dimensional Syst. Nanostructures 91(2017) 15-31. [17] D. Toghraie, O. Akbari, A. Koveiti, R. Mashayekhi, The numerical investigation of turbulent nanofluid flow and two-dimensional forced convection heat transfer in a sinusoidal converging-diverging channel, Heat Transf. Res. 50(7) (2018) 2018025937. [18] A. Heydari, O.A. Akbari, M.R. Safaei, et al., The effect of attack angle of triangular ribs on heat transfer of nanofluids in a microchannel, J. Therm. Anal. Calorim. 131(3) (2018) 2893-2912. [19] A.B. Nohooji, D. Toghraie, F. Pourfattah, O.A. Akbari, R. Mashayekhi, Computational modeling of porous medium inside a channel with homogeneous nanofluid, J. Therm. Anal. Calorim. (2019) 1-16. [20] S. Dabiri, E. Khodabandeh, A.K. Poorfar, R. Mashayekhi, D. Toghraie, S.A.A. Zade, Parametric investigation of thermal characteristic in trapezoidal cavity receiver for a linear Fresnel solar collector concentrator, Energy 153(2018) 17-26. [21] M.R. Shamsi, O.A. Akbari, A. Marzban, D. Toghraie, R. Mashayekhi, Increasing heat transfer of non-Newtonian nanofluid in rectangular microchannel with triangular ribs, Phys. E Low-Dimensional Syst. Nanostructures 93(2017) 167-178. [22] A. Mostafazadeh, D. Toghraie, R. Mashayekhi, O.A. Akbari, Effect of radiation on laminar natural convection of nanofluid in a vertical channel with single-and two-phase approaches, J. Therm. Anal. Calorim. 138(2019) 779-794. [23] M. Bahiraei, R. Rahmani, A. Yaghoobi, E. Khodabandeh, R. Mashayekhi, M. Amani, Recent research contributions concerning use of nanofluids in heat exchangers:A critical review, Appl. Therm. Eng. 133(2018) 137-159. [24] M. Lorenzini, G.L. Morini, S. Salvigni, Laminar, transitional and turbulent friction factors for gas flows in smooth and rough microtubes, Int. J. Therm. Sci. 49(2) (2010) 248-255. [25] S.E. Turner, L.C. Lam, M. Faghri, O.J. Gregory, Experimental investigation of gas flow in microchannels, J. Heat Transf. 126(5) (2004) 753-763. [26] A. Beskok, G.E. Karniadakis, Report:A model for flows in channels, pipes, and ducts at micro and nano scales, Microscale Thermophys. Eng. 3(1) (1999) 43-77. [27] O. Aydın, M. Avcı, Analysis of laminar heat transfer in micro-Poiseuille flow, Int. J. Therm. Sci. 46(1) (2007) 30-37. [28] T. Zhang, L. Jia, L. Yang, Y. Jaluria, Effect of viscous heating on heat transfer performance in microchannel slip flow region, Int. J. Heat Mass Transf. 53(21-22) (2010) 4927-4934. [29] Z.C. Wang, D.W. Tang, X.G. Hu, Similarity solutions for flows and heat transfer in microchannels between two parallel plates, Int. J. Heat Mass Transf. 54(11-12) (2011) 2349-2354. [30] A.Q. Zade, M. Renksizbulut, J. Friedman, Heat transfer characteristics of developing gaseous slip-flow in rectangular microchannels with variable physical properties, Int. J. Heat Fluid Flow 32(1) (2011) 117-127. [31] S. Colin, Gas microflows in the slip flow regime:a critical review on convective heat transfer, J. Heat Transfer 134(2) (2012)20908. [32] G.L. Morini, M. Spiga, P. Tartarini, The rarefaction effect on the friction factor of gas flow in microchannels, Superlattice. Microst. 35(3-6) (2004) 587-599. [33] Z. Duan, Y.S. Muzychka, Slip flow in elliptic microchannels, Int. J. Therm. Sci. 46(11) (2007) 1104-1111. [34] X. Zhu, Q. Liao, M.D. Xin, Gas flow in microchannel of arbitrary shape in slip flow regime, Nanoscale Microscale Thermophys. Eng. 10(1) (2006) 41-54. [35] A. Sadeghi, M. Baghani, M.H. Saidi, Gaseous slip flow forced convection through ordered microcylinders, Microfluid. Nanofluidics 15(1) (2013) 73-85. [36] J. Koo, C. Kleinstreuer, Analysis of surface roughness effects on heat transfer in micro-conduits, Int. J. Heat Mass Transf. 48(13) (2005) 2625-2634. [37] B.-Y. Cao, M. Chen, Z.-Y. Guo, Effect of surface roughness on gas flow in microchannels by molecular dynamics simulation, Int. J. Eng. Sci. 44(13-14) (2006) 927-937. [38] G. Gamrat, M. Favre-Marinet, S. Le Person, Modelling of roughness effects on heat transfer in thermally fully-developed laminar flows through microchannels, Int. J. Therm. Sci. 48(12) (2009) 2203-2214. [39] C. Zhang, Y. Chen, Z. Deng, M. Shi, Role of rough surface topography on gas slip flow in microchannels, Phys. Rev. E 86(1) (2012)16319. [40] Z. Deng, Y. Chen, C. Shao, Gas flow through rough microchannels in the transition flow regime, Phys. Rev. E 93(1) (2016)13128. [41] O.I. Rovenskaya, G. Croce, Numerical simulation of gas flow in rough microchannels:hybrid kinetic-continuum approach versus Navier-Stokes, Microfluid. Nanofluidics 20(5) (2016)81. [42] J.-J. Shu, J.B.M. Teo, W.K. Chan, Fluid velocity slip and temperature jump at a solid surface, Appl. Mech. Rev. 69(2) (2017)20801. [43] D. Toghraie, A. Karimipour, M.R. Safaei, M. Goodarzi, H. Alipour, M. Dahari, Investigation of rib's height effect on heat transfer and flow parameters of laminar water-Al2O3 nanofluid in a rib-microchannelAuthor-Name:Akbari, Omid Ali, Appl. Math. Comput. 290(C) (2016) 135-153. [44] E. Gholamalizadeh, F. Pahlevanzadeh, K. Ghani, A. Karimipour, T.K. Nguyen, M.R. Safaei, Simulation of water/FMWCNT nanofluid forced convection in a microchannel filled with porous material under slip velocity and temperature jump boundary conditions, Int. J. Numer. Methods Heat Fluid Flow 30(5) (2019) 2329-2349, https://doi.org/10.1108/HFF-01-2019-0030. [45] M.H. Esfe, A. Karimipour, W.-M. Yan, M. Akbari, M.R. Safaei, M. Dahari, Experimental study on thermal conductivity of ethylene glycol based nanofluids containing Al2O3 nanoparticles, Int. J. Heat Mass Transf. 88(2015) 728-734. [46] A. Karimipour, M.H. Esfe, M.R. Safaei, D.T. Semiromi, S. Jafari, S.N. Kazi, Mixed convection of copper-water nanofluid in a shallow inclined lid driven cavity using the lattice Boltzmann method, Phys. A Stat. Mech. Its Appl. 402(2014) 150-168. [47] Z. Nikkhah, et al., Forced convective heat transfer of water/functionalized multiwalled carbon nanotube nanofluids in a microchannel with oscillating heat flux and slip boundary condition, Int. Commun. Heat Mass Transf. 68(2015) 69-77. [48] A. Abdollahi, M.H.K. Darvanjooghi, A. Karimipour, M.R. Safaei, Experimental study to obtain the viscosity of CuO-loaded nanofluid:Effects of nanoparticles' mass fraction, temperature and basefluid's types to develop a correlation, Meccanica 53(15) (2018) 3739-3757. [49] A.A.A.A. Alrashed, A. Karimipour, S.A. Bagherzadeh, M.R. Safaei, M. Afrand, Electroand thermophysical properties of water-based nanofluids containing copper ferrite nanoparticles coated with silica:Experimental data, modeling through enhanced ANN and curve fitting, Int. J. Heat Mass Transf. 127(2018) 925-935. [50] O.A. Akbari, D. Toghraie, A. Karimipour, Investigation of rib's height effect on heat transfer and flow parameters of laminar water-Al2O3 nanofluid in a ribmicrochannel, Appl. Math. Comput. 290(2016) 135-153. [51] H. Alipour, A. Karimipour, M.R. Safaei, D.T. Semiromi, O.A. Akbari, Influence of Tsemi attached rib on turbulent flow and heat transfer parameters of a silver-water nanofluid with different volume fractions in a three-dimensional trapezoidal microchannel, Phys. E Low-Dimensional Syst. Nanostructures 88(2017) 60-76. [52] M. Goodarzi, A. Amiri, M.S. Goodarzi, M.R. Safaei, et al., Investigation of heat transfer and pressure drop of a counter flow corrugated plate heat exchanger using MWCNT based nanofluids, Int. Commun. Heat Mass Transf. 66(2015) 172-179. [53] B. Ahmadi, A.A. Golneshan, H. Arasteh, A. Karimipour, Q.-V. Bach, Energy and exergy analysis and optimization of a gas turbine cycle coupled by a bottoming organic Rankine cycle, J. Therm. Anal. Calorim. (2019) 1-16. [54] R. Mashayekhi, H. Arasteh, D. Toghraie, S.H. Motaharpour, A. Keshmiri, M. Afrand, Heat transfer enhancement of Water-Al2O3 nanofluid in an oval channel equipped with two rows of twisted conical strip inserts in various directions:A two-phase approach, Comput. Math. with Appl. 79(8) (2020) 2203-2215. [55] H. Arasteh, R. Mashayekhi, M. Ghaneifar, D. Toghraie, M. Afrand, Heat transfer enhancement in a counter-flow sinusoidal parallel-plate heat exchanger partially filled with porous media using metal foam in the channels' divergent sections, J. Therm. Anal. Calorim. (2019) https://doi.org/10.1007/s10973-019-08870-W. [56] M. Hosseini, H.H. Afrouzi, H. Arasteh, D. Toghraie, Energy analysis of a proton exchange membrane fuel cell (PEMFC) with an open-ended anode using agglomerate model:A CFD study, Energy (2019) 116090. [57] Z. Tian, H. Arasteh, A. Parsian, A. Karimipour, M.R. Safaei, T.K. Nguyen, Estimate the shear rate & apparent viscosity of multi-phased non-Newtonian hybrid nanofluids via new developed Support Vector Machine method coupled with sensitivity analysis, Phys. A Stat. Mech. Its Appl. (2019) 122456. [58] M. Miansari, M.A. Valipour, H. Arasteh, D. Toghraie, Energy and exergy analysis and optimization of helically grooved shell and tube heat exchangers by using Taguchi experimental design, J. Therm. Anal. Calorim. 139(2020) 3151-3164. [59] H. Arasteh, M.R. Salimpour, M.R. Tavakoli, Optimal distribution of metal foam inserts in a double-pipe heat exchanger, Int. J. Numer. Methods Heat Fluid Flow 29(4) (2019) 1322-3142. [60] Arasteh H., Mashayekhi R., Goodarzi M., Motaharpour S. H., Dahari M., Toghraie D., Heat and fluid flow analysis of metal foam embedded in a double-layered sinusoidal heat sink under local thermal non-equilibrium condition using nanofluid, J. Therm. Anal. Calorim. (n.d.) 1-16. [61] H. Arasteh, R. Mashayekhi, D. Toghraie, A. Karimipour, M. Bahiraei, A. Rahbari, Optimal arrangements of a heat sink partially filled with multilayered porous media employing hybrid nanofluid, J. Therm. Anal. Calorim. (2019) 1-14. [62] D. Toghraie, R. Mashayekhi, H. Arasteh, S. Sheykhi, M. Niknejadi, A.J. Chamkha, Two-phase investigation of water-Al2O3 nanofluid in a micro concentric annulus under non-uniform heat flux boundary conditions, Int. J. Numer. Methods Heat Fluid Flow 30(4) (2019) 1795-1814, https://doi.org/10.1108/HFF-11-2018-0628. [63] M.H. Khadem, M. Shams, S. Hossainpour, Numerical simulation of roughness effects on flow and heat transfer in microchannels at slip flow regime, Int. Commun. Heat Mass Transf. 36(1) (2009) 69-77. |
[1] | Ming Chen, Huiyan Jiao, Jun Li, Zhibin Wang, Feng He, Yang Jin. Liquid–liquid two-phase flow in a wire-embedded concentric microchannel: Flow pattern and mass transfer performance [J]. Chinese Journal of Chemical Engineering, 2023, 56(4): 281-289. |
[2] | Qi Han, Xin-Yuan Zhang, Hai-Bo Wu, Xian-Tai Zhou, Hong-Bing Ji. Different efficiency toward the biomimetic aerobic oxidation of benzyl alcohol in microchannel and bubble column reactors: Hydrodynamic characteristics and gas–liquid mass transfer [J]. Chinese Journal of Chemical Engineering, 2023, 55(3): 84-92. |
[3] | Chunxin Fan, Zini Guo, Jianhong Luo. Study on an improved rotating microchannel separator in the intensification for demulsification and separation process [J]. Chinese Journal of Chemical Engineering, 2023, 55(3): 181-191. |
[4] | Qinyan Wang, Yang Jin, Jun Li, Yongbo Zhou, Ming Chen. Study on liquid–liquid two-phase mass transfer characteristics in the microchannel with deformed insert [J]. Chinese Journal of Chemical Engineering, 2023, 54(2): 114-126. |
[5] | Yongbo Zhou, Yang Jin, Jun Li, Qinyan Wang, Ming Chen. Numerical study on the hydrodynamics behavior of a central insert microchannel [J]. Chinese Journal of Chemical Engineering, 2023, 53(1): 361-373. |
[6] | Ye Zhang, Yong Gao, Peng Wang, Duo Na, Zhenming Yang, Jinsong Zhang. Solvent extraction with a three-dimensional reticulated hollow-strut SiC foam microchannel reactor [J]. Chinese Journal of Chemical Engineering, 2022, 46(6): 53-62. |
[7] | Yaran Yin, Xianming Zhang, Chunying Zhu, Taotao Fu, Youguang Ma. Formation characteristics of Taylor bubbles in a T-junction microchannel with chemical absorption [J]. Chinese Journal of Chemical Engineering, 2022, 46(6): 214-222. |
[8] | Zhen Chen, Chunying Zhu, Taotao Fu, Xiqun Gao, Youguang Ma. Formation dynamics and size prediction of bubbles for slurry system in T-shape microchannel [J]. Chinese Journal of Chemical Engineering, 2022, 45(5): 153-161. |
[9] | Shuai Chen, Jiahong Lan, Yu Zhang, Jia Guo, Zhikai Cao, Yong Sha. 3D multiphase flow simulation of Marangoni convection on reactive absorption of CO2 by monoethanolamine in microchannel [J]. Chinese Journal of Chemical Engineering, 2022, 43(3): 370-377. |
[10] | Fang Yang, Wei Zhao, Guiren Wang. Electrokinetic mixing of two fluids with equivalent conductivity [J]. Chinese Journal of Chemical Engineering, 2022, 42(2): 256-260. |
[11] | Yu-Liang Sun, Davood Toghraie, Omid Ali Akbari, Farzad Pourfattah, As'ad Alizadeh, Navid Ghajari, Mehran Aghajani. Thermal performance and entropy generation for nanofluid jet injection on a ribbed microchannel with oscillating heat flux: Investigation of the first and second laws of thermodynamics [J]. Chinese Journal of Chemical Engineering, 2022, 42(2): 450-464. |
[12] | Xuanyu Nie, Chunying Zhu, Taotao Fu, Youguang Ma. Mass transfer intensification and mechanism analysis of gas–liquid two-phase flow in the microchannel embedding triangular obstacles [J]. Chinese Journal of Chemical Engineering, 2022, 51(11): 100-108. |
[13] | Yingjie Fei, Chunying Zhu, Taotao Fu, Xiqun Gao, Youguang Ma. Slug bubble deformation and its influence on bubble breakup dynamics in microchannel [J]. Chinese Journal of Chemical Engineering, 2022, 50(10): 66-74. |
[14] | Siyuan Chen, Tao Zhang, Li Lv, Yanxiao Chen, Shengwei Tang. Simulation of the hydrodynamics and mass transfer in a falling film wavy microchannel [J]. Chinese Journal of Chemical Engineering, 2021, 34(6): 97-105. |
[15] | Mehdi Bahiraei, Ali Monavari. Impact of nanoparticle shape on thermohydraulic performance of a nanofluid in an enhanced microchannel heat sink for utilization in cooling of electronic components [J]. Chinese Journal of Chemical Engineering, 2021, 40(12): 36-47. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||