Chinese Journal of Chemical Engineering ›› 2022, Vol. 47 ›› Issue (7): 1-10.DOI: 10.1016/j.cjche.2021.05.045
Minjie Shi1, Hangtian Zhu1, Cheng Yang2, Jing Xu1, Chao Yan1
Received:
2021-02-19
Revised:
2021-05-06
Online:
2022-08-19
Published:
2022-07-28
Contact:
Chao Yan,E-mail:chaoyan@just.edu.cn
Supported by:
Minjie Shi1, Hangtian Zhu1, Cheng Yang2, Jing Xu1, Chao Yan1
通讯作者:
Chao Yan,E-mail:chaoyan@just.edu.cn
基金资助:
Minjie Shi, Hangtian Zhu, Cheng Yang, Jing Xu, Chao Yan. Chemical reduction-induced fabrication of graphene hybrid fibers for energy-dense wire-shaped supercapacitors[J]. Chinese Journal of Chemical Engineering, 2022, 47(7): 1-10.
Minjie Shi, Hangtian Zhu, Cheng Yang, Jing Xu, Chao Yan. Chemical reduction-induced fabrication of graphene hybrid fibers for energy-dense wire-shaped supercapacitors[J]. 中国化学工程学报, 2022, 47(7): 1-10.
Add to citation manager EndNote|Ris|BibTeX
URL: https://cjche.cip.com.cn/EN/10.1016/j.cjche.2021.05.045
[1] J. Shang, Q.Y. Huang, L. Wang, Y. Yang, P. Li, Z.J. Zheng, Soft hybrid scaffold (SHS) strategy for realization of ultrahigh energy density of wearable aqueous supercapacitors, Adv Mater 32(4)(2020) e1907088 [2] Wang L, Fu X, He J, Shi X, Chen T, Chen P, Wang B, Peng H, Application challenges in fiber and textile electronics, Adv Mater 32(5)(2020) e1901971.https://www.ncbi.nlm.nih.gov/pubmed/31273843/ [3] J.C. Luo, S.J. Gao, H. Luo, L. Wang, X.W. Huang, Z. Guo, X.J. Lai, L.W. Lin, R.K.Y. Li, J.F. Gao, Superhydrophobic and breathable smart MXene-based textile for multifunctional wearable sensing electronics, Chem. Eng. J. 406(2021)126898.http://dx.doi.org/10.1016/j.cej.2020.126898 [4] Y. Han, Y.Z. Lu, S.H. Shen, Y. Zhong, S. Liu, X.H. Xia, Y.X. Tong, X.H. Lu, Enhancing the capacitive storage performance of carbon fiber textile by surface and structural modulation for advanced flexible asymmetric supercapacitors, Adv. Funct. Mater. 29(7)(2019)1806329.https://doi.org/10.1002/adfm.201806329 [5] Q.Y. Gui, L.X. Wu, Y.Y. Li, J.P. Liu, Scalable wire-type asymmetric pseudocapacitor achieving high volumetric energy/power densities and ultralong cycling stability of 100000 times, Adv Sci (Weinh)6(10)(2019)1802067.https://www.ncbi.nlm.nih.gov/pubmed/31131191/ [6] Z.H. Sun, A.B. Yuan, Electrochemical performance of nickel hydroxide/activated carbon supercapacitors using a modified polyvinyl alcohol based alkaline polymer electrolyte, Chin. J. Chem. Eng. 17(1)(2009)150-155.http://dx.doi.org/10.1016/S1004-9541(09)60047-1 [7] J.Y. Zhang, X.F. Yang, Y.B. He, Y.L. Bai, L.P. Kang, H. Xu, F. Shi, Z.B. Lei, Z.H. Liu, Δ-MnO2/holey graphene hybrid fiber for all-solid-state supercapacitor, J. Mater. Chem. A 4(23)(2016)9088-9096.https://doi.org/10.1039/c6ta02989b [8] W. Lan, X.T. Zhang, A.C. Zhai, W.Q. Meng, H.W. Sheng, W. Dou, C.F. Zhang, Q. Su, J.Y. Zhou, E.Q. Xie, Flexible CuO nanotube arrays composite electrodes for wire-shaped supercapacitors with robust electrochemical stability, Chem. Eng. J. 374(2019)181-188.http://dx.doi.org/10.1016/j.cej.2019.05.169 [9] A. Khan, R.A. Senthil, J.Q. Pan, Y.Z. Sun, A facile preparation of 3D flower-shaped Ni/Al-LDHs covered by β-Ni (OH)2 nanoplates as superior material for high power application, Chin. J. Chem. Eng. 27(10)(2019)2526-2534.http://dx.doi.org/10.1016/j.cjche.2019.01.025 [10] P.P. Li, D.Z. Zhang, Y.H. Xu, C.H. Ni, G. Shi, X.X. Sang, Nitrogen-doped hierarchical porous carbon from polyaniline/silica self-aggregates for supercapacitor, Chin. J. Chem. Eng. 27(3)(2019)709-716.http://dx.doi.org/10.1016/j.cjche.2018.09.014 [11] S.B. Chen, L. Wang, M.M. Huang, L.P. Kang, Z.B. Lei, H. Xu, F. Shi, Z.H. Liu, Reduced graphene oxide/Mn3O4 nanocrystals hybrid fiber for flexible all-solid-state supercapacitor with excellent volumetric energy density, Electrochimica Acta 242(2017)10-18.http://dx.doi.org/10.1016/j.electacta.2017.05.013 [12] M. Tebyetekerwa, I. Marriam, Z. Xu, S.Y. Yang, H. Zhang, F. Zabihi, R. Jose, S.J. Peng, M.F. Zhu, S. Ramakrishna, Critical insight:Challenges and requirements of fibre electrodes for wearable electrochemical energy storage, Energy Environ. Sci. 12(7)(2019)2148-2160.https://doi.org/10.1039/c8ee02607f [13] Y.X. Yu, G.P. Jin, Y.H. Fang, Z. Xu, X. Lü, C.N. Chen, Potential-aided recovery of iodide using 2-D nanosheet CuxO coating polymer/graphene/carbon fibers composite, Chin. J. Chem. Eng. 28(4)(2020)1046-1054.http://dx.doi.org/10.1016/j.cjche.2019.11.010 [14] Z.P. Yang, Y.H. Jia, Y.T. Niu, Z.Z. Yong, K.J. Wu, C.J. Zhang, M. Zhu, Y.Y. Zhang, Q.W. Li, Wet-spun PVDF nanofiber separator for direct fabrication of coaxial fiber-shaped supercapacitors, Chem. Eng. J. 400(2020)125835.http://dx.doi.org/10.1016/j.cej.2020.125835 [15] P. Song, J. Tao, X.M. He, Y.M. Sun, X.P. Shen, L.Z. Zhai, A.H. Yuan, D.Y. Zhang, Z.Y. Ji, B.L. Li, Silk-inspired stretchable fiber-shaped supercapacitors with ultrahigh volumetric capacitance and energy density for wearable electronics, Chem. Eng. J. 386(2020)124024.http://dx.doi.org/10.1016/j.cej.2020.124024 [16] Z. Lu, J. Foroughi, C.Y. Wang, H.R. Long, G.G. Wallace, Superelastic hybrid CNT/graphene fibers for wearable energy storage, Adv. Energy Mater. 8(8)(2018)1702047.https://doi.org/10.1002/aenm.201702047 [17] X.H. Zheng, Q.L. Hu, X.S. Zhou, W.Q. Nie, C.L. Li, N.Y. Yuan, Graphene-based fibers for the energy devices application:A comprehensive review, Mater. Des. 201(2021)109476.http://dx.doi.org/10.1016/j.matdes.2021.109476 [18] B. Fang, D. Chang, Z. Xu, C. Gao, A review on graphene fibers:Expectations, advances, and prospects, Adv Mater 32(5)(2020) e1902664 [19] G.Q. Xin, W.G. Zhu, Y.X. Deng, J. Cheng, L.T. Zhang, A.J. Chung, S. De, J. Lian, Microfluidics-enabled orientation and microstructure control of macroscopic graphene fibres, Nat Nanotechnol 14(2)(2019)168-175.https://www.ncbi.nlm.nih.gov/pubmed/30643269/ [20] Z. Xu, C. Gao, Graphene fiber:A new trend in carbon fibers, Mater. Today 18(9)(2015)480-492.http://dx.doi.org/10.1016/j.mattod.2015.06.009 [21] M. Lu, Z.Y. Zhang, L.P. Kang, X.X. He, Q. Li, J. Sun, R.B. Jiang, H. Xu, F. Shi, Z.B. Lei, Z.H. Liu, Intercalation and delamination behavior of Ti3C2Tx and MnO2/Ti3C2Tx/RGO flexible fibers with high volumetric capacitance, J. Mater. Chem. A 7(20)(2019)12582-12592.https://doi.org/10.1039/c9ta01993f [22] T. Xu, D.Z. Yang, Z.J. Fan, X.F. Li, Y.X. Liu, C. Guo, M. Zhang, Z.Z. Yu, Reduced graphene oxide/carbon nanotube hybrid fibers with narrowly distributed mesopores for flexible supercapacitors with high volumetric capacitances and satisfactory durability, Carbon 152(2019)134-143.http://dx.doi.org/10.1016/j.carbon.2019.06.005 [23] S.L. Zhai, C.J. Wang, H.E. Karahan, Y.Q. Wang, X.C. Chen, X. Sui, Q.W. Huang, X.Z. Liao, X. Wang, Y. Chen, Nano-RuO2-decorated holey graphene composite fibers for micro-supercapacitors with ultrahigh energy density, Small (2018) e1800582. https://www.ncbi.nlm.nih.gov/pubmed/29882370/ [24] L.L. Chen, Y. Liu, Y. Zhao, N. Chen, L.T. Qu, Graphene-based fibers for supercapacitor applications, Nanotechnology 27(3)(2016)032001.https://www.ncbi.nlm.nih.gov/pubmed/26655379/ [25] G. Wu, P.F. Tan, X.J. Wu, L. Peng, H.Y. Cheng, C.F. Wang, W. Chen, Z.Y. Yu, S. Chen, Wearable devices:High-performance wearable micro-supercapacitors based on microfluidic-directed nitrogen-doped graphene fiber electrodes (adv. funct. mater. 36/2017), Adv. Funct. Mater. 27(36)(2017) adfm.201770215 [26] J.H. Li, J.Y. Li, L.F. Li, M. Yu, H.J. Ma, B.W. Zhang, Flexible graphene fibers prepared by chemical reduction-induced self-assembly, J. Mater. Chem. A 2(18)(2014)6359.https://doi.org/10.1039/c4ta00431k [27] G.X. Qu, J.L. Cheng, X.D. Li, D.M. Yuan, P.N. Chen, X.L. Chen, B. Wang, H.S. Peng, A fiber supercapacitor with high energy density based on hollow graphene/conducting polymer fiber electrode, Adv Mater 28(19)(2016)3646-3652.https://www.ncbi.nlm.nih.gov/pubmed/27001216/ [28] Y.Y. Zheng, S.F. Ji, H.F. Liu, M. Li, H. Yang, Synthesis of mesoporous γ-AlOOH@Fe3O4 magnetic nanomicrospheres, Particuology 10(6)(2012)751-758.http://dx.doi.org/10.1016/j.partic.2012.04.003 [29] Z.X. Yang, K. Qian, J. Lv, W.H. Yan, J.H. Liu, J.W. Ai, Y.X. Zhang, T.L. Guo, X.T. Zhou, S. Xu, Z.P. Guo, Encapsulation of Fe3O4 nanoparticles into N, S co-doped graphene sheets with greatly enhanced electrochemical performance, Sci Rep 6(2016)27957.https://www.ncbi.nlm.nih.gov/pubmed/27296103/ [30] Y.P. Yew, K. Shameli, M. Miyake, N.B.B. Ahmad Khairudin, S.E.B. Mohamad, H. Hara, M.F.B. Mad Nordin, K.X. Lee, An eco-friendly means of biosynthesis of superparamagnetic magnetite nanoparticles via marine polymer, IEEE Trans. Nanotechnol. 16(6)(2017)1047-1052 [31] X.L. Wang, Y.G. Liu, H. Arandiyan, H.P. Yang, L. Bai, J. Mujtaba, Q.G. Wang, S.H. Liu, H.Y. Sun, Uniform Fe3O4 microflowers hierarchical structures assembled with porous nanoplates as superior anode materials for lithium-ion batteries, Appl. Surf. Sci. 389(2016)240-246.http://dx.doi.org/10.1016/j.apsusc.2016.07.105 [32] L. Pan, X.D. Zhu, X.M. Xie, Y.T. Liu, Smart hybridization of TiO2 nanorods and Fe3O4Nanoparticles with pristine graphene nanosheets:Hierarchically nanoengineered ternary heterostructures for high-rate lithium storage, Adv. Funct. Mater. 25(22)(2015)3341-3350.https://doi.org/10.1002/adfm.201404348 [33] F.F. Han, J. Xu, J. Zhou, J. Tang, W.H. Tang, Oxygen vacancy-engineered Fe2O3 nanoarrays as free-standing electrodes for flexible asymmetric supercapacitors, Nanoscale 11(26)(2019)12477-12483.https://www.ncbi.nlm.nih.gov/pubmed/31225562/ [34] S. Jain, J. Shah, N.S. Negi, C. Sharma, R.K. Kotnala, Significance of interface barrier at electrode of hematite hydroelectric cell for generating ecopower by water splitting, Int. J. Energy Res. 43(9)(2019)4743-4755.https://doi.org/10.1002/er.4613 [35] C.Y. Zhang, S. Liu, T.T. Chen, Z.H. Li, J.C. Hao, Oxygen vacancy-engineered Fe2O3 nanocubes via a task-specific ionic liquid for electrocatalytic N2 fixation, Chem Commun (Camb)55(51)(2019)7370-7373.https://www.ncbi.nlm.nih.gov/pubmed/31173021/ [36] X.Q. Cai, X.P. Shen, L.B. Ma, Z.Y. Ji, C. Xu, A.H. Yuan, Solvothermal synthesis of NiCo-layered double hydroxide nanosheets decorated on RGO sheets for high performance supercapacitor, Chem. Eng. J. 268(2015)251-259.http://dx.doi.org/10.1016/j.cej.2015.01.072 [37] A. Salman, S. Padmajan Sasikala, I.H. Kim, J.T. Kim, G.S. Lee, J.G. Kim, S.O. Kim, Tungsten nitride-coated graphene fibers for high-performance wearable supercapacitors, Nanoscale 12(39)(2020)20239-20249.https://www.ncbi.nlm.nih.gov/pubmed/33026025/ [38] Y.K. Zhang, Z. Sun, H. Wang, Y.D. Wang, M. Liang, S. Xue, Nitrogen-doped graphene as a cathode material for dye-sensitized solar cells:Effects of hydrothermal reaction and annealing on electrocatalytic performance, RSC Adv. 5(14)(2015)10430-10439.https://doi.org/10.1039/c4ra13224f [39] C.H. Lu, J. Meng, J. Zhang, X.Y. Chen, M.Z. Du, Y.P. Chen, C.Y. Hou, J.L. Wang, A.Q. Ju, X.H. Wang, Y.P. Qiu, S.R. Wang, K. Zhang, Correction to"three-dimensional hierarchically porous graphene fiber-shaped supercapacitors with high specific capacitance and rate capability″, ACS Appl Mater Interfaces 11(34)(2019)31573.https://www.ncbi.nlm.nih.gov/pubmed/31418259/ [40] Y.C. Liu, N. Zhang, L.F. Jiao, J. Chen, Tin nanodots encapsulated in porous nitrogen-doped carbon nanofibers as a free-standing anode for advanced sodium-ion batteries, Adv Mater 27(42)(2015)6702-6707.https://www.ncbi.nlm.nih.gov/pubmed/26422696/ [41] X.D. Li, Y. Feng, M.C. Li, W. Li, H. Wei, D.D. Song, Smart hybrids of Zn2GeO4 nanoparticles and ultrathin g-C3N4 Layers:Synergistic lithium storage and excellent electrochemical performance, Adv. Funct. Mater. 25(44)(2015)6858-6866.https://doi.org/10.1002/adfm.201502938 [42] C. Yang, M.N. Han, H.H. Yan, F. Li, M.J. Shi, L.P. Zhao, In-situ probing phase evolution and electrochemical mechanism of ZnMn2O4 nanoparticles anchored on porous carbon polyhedrons in high-performance aqueous Zn-ion batteries, J. Power Sources 452(2020)227826.http://dx.doi.org/10.1016/j.jpowsour.2020.227826 [43] Y.J. Chen, Z.E. Liu, L. Sun, Z.W. Lu, K.L. Zhuo, Nitrogen and sulfur co-doped porous graphene aerogel as an efficient electrode material for high performance supercapacitor in ionic liquid electrolyte, J. Power Sources 390(2018)215-223.http://dx.doi.org/10.1016/j.jpowsour.2018.04.057 [44] B.S. Shen, R.S. Guo, J.W. Lang, L. Liu, L.Y. Liu, X.B. Yan, A high-temperature flexible supercapacitor based on pseudocapacitive behavio r of FeOOH in an ionic liquid electrolyte, J. Mater. Chem. A 4(21)(2016)8316-8327.https://doi.org/10.1039/c6ta01734g [45] M.J. Shi, P. Xiao, J.W. Lang, C. Yan, X.B. Yan, Porous g-C3N4 and MXene dual-confined FeOOH quantum dots for superior energy storage in an ionic liquid, Adv. Sci. 7(2)(2020)1901975.https://doi.org/10.1002/advs.201901975 [46] S.X. Sun, J.W. Lang, R.T. Wang, L.B. Kong, X.C. Li, X.B. Yan, Identifying pseudocapacitance of Fe2O3 in an ionic liquid and its application in asymmetric supercapacitors, J. Mater. Chem. A 2(35)(2014)14550-14556.https://doi.org/10.1039/c4ta02026j [47] X.T. Ding, Y. Zhao, C.G. Hu, Y. Hu, Z.L. Dong, N. Chen, Z.P. Zhang, L.T. Qu, Spinning fabrication of graphene/polypyrrole composite fibers for all-solid-state, flexible fibriform supercapacitors, J. Mater. Chem. A 2(31)(2014)12355.https://doi.org/10.1039/c4ta01230e [48] W.J. Ma, S.H. Chen, S.Y. Yang, W.P. Chen, Y.H. Cheng, Y.W. Guo, S.J. Peng, S. Ramakrishna, M.F. Zhu, Hierarchical MnO2 nanowire/graphene hybrid fibers with excellent electrochemical performance for flexible solid-state supercapacitors, J. Power Sources 306(2016)481-488.http://dx.doi.org/10.1016/j.jpowsour.2015.12.063 [49] G.Z. Sun, J.Q. Liu, X. Zhang, X.W. Wang, H. Li, Y. Yu, W. Huang, H. Zhang, P. Chen, Fabrication of ultralong hybrid microfibers from nanosheets of reduced graphene oxide and transition-metal dichalcogenides and their application as supercapacitors, Angew. Chem. 126(46)(2014)12784-12788.https://doi.org/10.1002/ange.201405325 [50] S.L. Wang, N.S. Liu, J. Su, L.Y. Li, F. Long, Z.G. Zou, X.L. Jiang, Y.H. Gao, Highly stretchable and self-healable supercapacitor with reduced graphene oxide based fiber springs, ACS Nano 11(2)(2017)2066-2074.https://www.ncbi.nlm.nih.gov/pubmed/28112894/ |
[1] | Song Hu, Jinlong Li, Qihua Wang, Weisheng Yang. Design and optimization of an integrated process for the purification of propylene oxide and the separation of propylene glycol by-product [J]. Chinese Journal of Chemical Engineering, 2022, 45(5): 111-120. |
[2] | Alireza Afsharpour. A new approach for correlating of H2S solubility in [emim][Lac], [bmim][ac] and [emim][pro] ionic liquids using two-parts combined models [J]. Chinese Journal of Chemical Engineering, 2022, 44(4): 521-527. |
[3] | Haiyan Jiang, Lu Bai, Bingbing Yang, Shaojuan Zeng, Haifeng Dong, Xiangping Zhang. The effect of protic ionic liquids incorporation on CO2 separation performance of Pebax-based membranes [J]. Chinese Journal of Chemical Engineering, 2022, 43(3): 169-176. |
[4] | Yuyang Kang, Yiqing Luo, Xigang Yuan. Recent progress on equation-oriented optimization of complex chemical processes [J]. Chinese Journal of Chemical Engineering, 2022, 41(1): 162-169. |
[5] | Chaofeng Zhang, Tonglu Zhang, Jing Zhang, Jiandong Zhang, Ruifeng Li. Controllable synthesis of polyoxymethylene dimethyl ethers by ionic liquids encapsulated in mesoporous SBA-16 [J]. Chinese Journal of Chemical Engineering, 2021, 32(4): 175-182. |
[6] | Fangfang Li, Francesca Mocci, Xiangping Zhang, Xiaoyan Ji, Aatto Laaksonen. Ionic liquids for CO2 electrochemical reduction [J]. Chinese Journal of Chemical Engineering, 2021, 29(3): 75-93. |
[7] | Yuanyue Zhao, Yihui Dong, Yandong Guo, Feng Huo, Fang Yan, Hongyan He. Recent progress of green sorbents-based technologies for low concentration CO2 capture [J]. Chinese Journal of Chemical Engineering, 2021, 29(3): 113-125. |
[8] | Zhengxing Dai, Yifeng Chen, Chang Liu, Xiaohua Lu, Yanrong Liu, Xiaoyan Ji. Prediction and verification of heat capacities for pure ionic liquids [J]. Chinese Journal of Chemical Engineering, 2021, 29(3): 169-176. |
[9] | Jianying Dai, Yaqin Sun, Zhilong Xiu. Ionic liquid-based salting-out extraction of bio-chemicals [J]. Chinese Journal of Chemical Engineering, 2021, 29(2): 185-193. |
[10] | Xuan Lin, Zhiguo Su, Yanli Yang, Songping Zhang. The potential of ionic liquids in biopharmaceutical engineering [J]. Chinese Journal of Chemical Engineering, 2021, 29(2): 236-243. |
[11] | Bo-Yun Liu, Min-Jie Chen, Liang Yang, Bo Zhao, Tao Xia, Gang-Gang Chang. Hollow MOF capsule encapsulated amino-functionalized ionic liquid for excellent CO2 catalytic conversion [J]. Chinese Journal of Chemical Engineering, 2021, 40(12): 124-130. |
[12] | Xuanyu Li, Qiang Feng, Ziwei Han, Xingyu Jiang. Enhancing gene editing efficiency for cells by CRISPR/Cas9 system-loaded multilayered nanoparticles assembled via microfluidics [J]. Chinese Journal of Chemical Engineering, 2021, 38(10): 216-220. |
[13] | Xiaocheng Lin, Youjie Huang, Ling Li, Changshen Ye, Jie Chen, Ting Qiu. Polymeric ionic liquids (PILs) with high acid density: Tunable catalytic performance for biodiesel production [J]. Chinese Journal of Chemical Engineering, 2021, 38(10): 266-275. |
[14] | Sedigheh Sadegh Hassani, Maryam Daraee, Zahra Sobat. Advanced development in upstream of petroleum industry using nanotechnology [J]. Chinese Journal of Chemical Engineering, 2020, 28(6): 1483-1491. |
[15] | Pengze Zhang, Yangzhen Jin, Zhaobin Jiang, Guanqun Xie, Qunfeng Zhang, Xiaonian Li. Gas-phase dehydrochlorination of 1, 1, 2, 2-tetrachloroethane over the non-metal supported ionic liquid catalyst [J]. Chinese Journal of Chemical Engineering, 2020, 28(6): 1623-1627. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||