[1] V.G.H. Eijsink, S. Gåseidnes, T.V. Borchert, B.V.D. Burg, Directed evolution of enzyme stability, Biomol. Eng. 22(2005)21-30 [2] V.M. Balcão, M.M.D.C. Vila, Structural and functional stabilization of protein entities:State-of-the-art, Adv. Drug Deliv. Rev. 93(2015)25-41 [3] D.A. Cowan, R. Fernandez-Lafuente, Enhancing the functional properties of thermophilic enzymes by chemical modification and immobilization, Enzyme Microb. Technol. 49(2011)326-346 [4] X. Liu, J. Sun, W. Gao, Site-Selective Protein modification with polymers for advanced biomedical applications, Biomaterials 178(2018)413-434 [5] C. Yin, C. Zhang, M. Gao, Enzyme-catalyzed synthesis of vitamin e succinate using a chemically modified Novozym-435, Chinese J. Chem. Eng. 19(2011)135-139 [6] J. Morgenstern, P. Baumann, C. Brunner, J. Hubbuch, Effect of PEG molecular weight and PEGylation degree on the physical stability of PEGylated lysozyme, Int. J. Pharm. 519(2017)408-417 [7] A. Küchler, D. Messmer, A.D. Schlüter, P. Walde, Preparation and applications of dendronized polymer-enzyme conjugates, Method Enzymol. 590(2017)445-474 [8] S.B. Jadhav, R.S. Singhal, Conjugation of α-amylase with dextran for enhanced stability:Process details, kinetics and structural analysis, Carbohydr. Polym. 90(2012)1811-1817 [9] R. Darias, R. Villalonga, Functional stabilization of cellulase by covalent modification with chitosan, J. Chem. Technol. Biotechnol. 76(2001)489-493 [10] A.J. Keefe, S. Jiang, Poly (zwitterionic) protein conjugates offer increased stability without sacrificing binding affinity or bioactivity, Nat. Chem. 4(2011)59-63 [11] I.J. Minten, N. Abello, M.E.F. Schooneveld-Bergmans, M.A van den Berg, Post-production modification of industrial enzymes, Appl. Microbiol. Biot. 98(2014)6215-6231 [12] J. Noro, T.G. Castro, A. Cavaco-Paulo, C. Silva, Substrate hydrophobicity and enzyme modifiers play a major role in the activity of lipase from Thermomyces lanuginosus, Catal. Sci. Technol. 10(2020)5913-5924 [13] K. Sonja, M. Jules, K. Harald, K. Rupert, A.B. Annette, B. Grit, Enzyme-polymer conjugates to enhance enzyme shelf life in a liquid detergent formulation, Macromol. Biosci. 18(2018)1800095 [14] B. Kaupbayeva, A.J. Russell, Polymer-enhanced biomacromolecules, Prog. Polym. Sci. 101(2020)101194 [15] J.A. Rodríguez-Martínez, R.J. Solá, B. Castillo, H.R. Cintrón-Colón, I. Rivera-Rivera, G. Barletta, K. Griebenow, Stabilization of α-chymotrypsin upon PEGylation correlates with reduced structural dynamics, Biotechnol. Bioeng. 101(2008)1142-1149 [16] G. Pasut, Polymers for protein conjugation, Polymers 6(2014)160-178 [17] M. Kovaliov, M.L. Allegrezza, B. Richter, D. Konkolewicz, S. Averick, Synthesis of lipase polymer hybrids with retained or enhanced activity using the grafting-from strategy, Polymer 137(2018)338-345 [18] M.S. Messina, K.M.M. Messina, A. Bhattacharya, H.R. Montgomery, H.D. Maynard, Preparation of biomolecule-polymer conjugates by grafting-from using ATRP, RAFT, or ROMP, Prog. Polym. Sci. 100(2020)101186 [19] A.K. Shakya, H. Sami, A. Srivastava, A. Kumar, Stability of responsive polymer-protein bioconjugates, Prog. Polym. Sci. 35(2010)459-486 [20] C.S. Cummings, A.S. Campbell, S.L. Baker, S. Carmali, H. Murata, A.J. Russell, Design of stomach acid-stable and mucin-binding enzyme polymer conjugates, Biomacromolecules 18(2017)576-586 [21] M. Monajati, A.M. Tamaddon, G. Yousefi, S.S. Abolmaali, R. Dinarvand, Applications of RAFT polymerization for chemical and enzymatic stabilization of L-asparaginase conjugates with well-defined poly (HPMA), New J. Chem. 43(2019)11564-11574 [22] Shaoyi, Jiang, Sijun, Liu, Chemical conjugation of zwitterionic polymers protects immunogenic enzyme and preserves bioactivity without polymer-specific antibody response, Nano Today 11(2016)285-291 [23] N. Chen, C. Zhang, X. Dong, Y. Sun, Fabrication and characterization of epoxylated zwitterionic copolymer-grafted silica nanoparticle as a new support for lipase immobilization, Chinese J. Chem. Eng. 28(2020)1129-1135 [24] H. Qi, Y. Du, G. Hu, L. Zhang, Poly (carboxybetaine methacrylate)-functionalized magnetic composite particles:A biofriendly support for lipase immobilization, Int. J. Biol. Macromol. 107(2017)2660-2666 [25] C. Zhang, Y. Liu, Y. Sun, Lipase immobilized to a short alkyl chain-containing zwitterionic polymer grafted on silica nanoparticles:Moderate activation and significant increase of thermal stability, Biochem. Eng. J. 146(2019)124-131 [26] P.K. Smith, R.I. Krohn, G.T. Hermanson, A.K. Mallia, F.H. Gartner, M.D. Provenzano, E.K. Fujimoto, N.M. Goeke, B.J. Olson, D.C. Klenk, Measurement of protein using bicinchoninic acid, Anal. Biochem. 150(1985)76-85 [27] U.K. Laemmli, Cleavage of structural proteins during the assembly of the head of bacteriophage T4, Nature 227(1970)680-685 [28] L. Ren, H. Jia, M. Yu, W. Shen, H. Zhou, P. Wei, Enhanced catalytic ability of Candida rugosa lipase immobilized on pore-enlarged hollow silica microspheres and cross-linked by modified dextran in both aqueous and non-aqueous phases, Biotechnol. Bioprocess Eng. 18(2013)888-896 [29] P. Grochulski, Y. Li, J.D. Schrag, F. Bouthillier, P. Smith, D. Harrison, B. Rubin, M. Cygler, Insights into interfacial activation from an open structure of Candida rugosa lipase, J. Biol. Chem. 268(1993)12843-12847 [30] B.M. Ganesh, A.M. Isloor, M. Padaki, Preparation and characterization of polysulfone and modified poly isobutylene-alt-maleic anhydride blend NF membrane, Desalination 287(2012)103-108 [31] J. Ge, M. Yan, D. Lu, M. Zhang, Z. Liu, Hyperbranched polymer conjugated lipase with enhanced activity and stability, Biochem. Eng. J. 36(2007)93-99 [32] M. Yan, J. Ge, W. Dong, Z. Liu, P. Ouyang, Preparation and characterization of a temperature-sensitive sulfobetaine polymer-trypsin conjugate, Biochem. Eng. J. 30(2006)48-54 [33] A. Sadana, J.P. Henley, Mechanistic analysis of complex enzyme deactivations:influence of various parameters on series-type inactivations, Biotechnol. Bioeng. 28(1986)977-987 [34] J.P. Henley, A. Sadana, Categorization of enzyme deactivations using a series-type mechanism, Enzyme Microb. Technol. 7(1985)50-60 [35] Y.Q. Wang, T.T. Chen, H.M. Zhang, Investigation of the interactions of lysozyme and trypsin with biphenol A using spectroscopic methods, Spectrochim. Acta A 75(2010)1130-1137 [36] M. Du, D. Lu, Z. Liu, Design and synthesis of lipase nanogel with interpenetrating polymer networks for enhanced catalysis:Molecular simulation and experimental validation, J. Mol. Catal. B:Enzym. 88(2013)60-68 [37] J.Z. Liu, M. Wang, Improvement of activity and stability of chloroperoxidase by chemical modification, BMC Biotechnol. 7(2007)23 [38] W.Y. Lou, M.H. Zong, T.J. Smith, H. Wu, J.F. Wang, Impact of ionic liquids on papain:An investigation of structure-function relationships, Green Chem. 8(2006)509-512 [39] R. Zhang, Y. Liu, X.R. Huang, M.C. Xu, R.T. Liu, W.S. Zong, Interaction of a digestive protease, Candida rugosa lipase, with three surfactants investigated by spectroscopy, molecular docking and enzyme activity assay, Sci. Total Environ. 622-623(2018)306-315 [40] X.Y. Liu, H.Y. Zeng, D.H. Peng, B.F.C.A. Gohi, B. Fan, The three-dimensional structure and catalytic activity of Candida rugosa lipase against acetaldehyde, J. Chem. Technol. Biotechnol. 90(2015)1110-1116 [41] U. Derewenda, L. Swenson, R. Green, Y. Wei, S. Yamaguchi, R. Joerger, M.J. Haas, Z.S. Derewenda, Current progress in crystallographic studies of new lipases from filamentous fungi, Protein Eng. 7(1994)551-557 [42] M. Holmquist, M. Norin, K. Hult, The role of arginines in stabilizing the active open-lid conformation of Rhizomucor miehei lipase, Lipids 28(1993)721-726 |