[1] B. Sun, Y.W. Liu, X. Chen, Q.L. Zhou, M. Su, Dynamic modeling and simulation of shell gasifier in IGCC, Fuel Process. Technol. 92(8)(2011)1418-1425.http://dx.doi.org/10.1016/j.fuproc.2011.02.017 [2] L.G. Zheng, E. Furinsky, Comparison of Shell, Texaco, BGL and KRW gasifiers as part of IGCC plant computer simulations, Energy Convers. Manag. 46(11-12)(2005)1767-1779.http://dx.doi.org/10.1016/j.enconman.2004.09.004 [3] H. Zhou, T.L. Xie, F.Q. You, On-line simulation and optimization of a commercial-scale shell entrained-flow gasifier using a novel dynamic reduced order model, Energy 149(2018)516-534.http://dx.doi.org/10.1016/j.energy.2018.02.031 [4] A.J. de Assis, R.M. Filho, Soft sensors development for on-line bioreactor state estimation, Comput. Chem. Eng. 24(2-7)(2000)1099-1103.http://dx.doi.org/10.1016/S0098-1354(00)00489-0 [5] C.Y. Wen, T.Z. Chaung, Entrainment coal gasification modeling, Ind. Eng. Chem. Process. Des. Dev. 18(4)(1979)684-695.https://www.mendeley.com/catalog/entrainment-coal-gasification-modeling/ [6] H. Watanabe, M. Otaka, Numerical simulation of coal gasification in entrained flow coal gasifier, Fuel 85(12-13)(2006)1935-1943.http://dx.doi.org/10.1016/j.fuel.2006.02.002 [7] R.F.D. Monaghan, A.F. Ghoniem, A dynamic reduced order model for simulating entrained flow gasifiers:Part I:Model development and description, Fuel 91(1)(2012)61-80.http://dx.doi.org/10.1016/j.fuel.2011.07.015 [8] H.H. Lee, J.C. Lee, Y.J. Joo, M. Oh, C.H. Lee, Dynamic modeling of Shell entrained flow gasifier in an integrated gasification combined cycle process, Appl. Energy 131(2014)425-440.http://dx.doi.org/10.1016/j.apenergy.2014.06.044 [9] Z.W. Yang, Z. Wang, Y.X. Wu, J.H. Wang, J.F. Lu, Z. Li, W.D. Ni, Dynamic model for an oxygen-staged slagging entrained flow gasifier, Energy Fuels 25(8)(2011)3646-3656.http://dx.doi.org/10.1021/ef200742s [10] Beijing Boiler Company, Calibration method of boiler unit thermodynamic calculation. China Machine Press, Beijing, 1976 [11] P.F. Ji, X.Q. Gao, D.X. Huang, Y. Yang, Prediction of syngas compositions in Shell coal gasification process via dynamic soft-sensing method, 201310th IEEE International Conference on Control and Automation (ICCA). June 12-14, 2013, Hangzhou, China. IEEE, 2013, 244-249 [12] K.C. Wang, C. Shang, F. Yang, Y.H. Jiang, D.X. Huang, Reaction temperature estimation in Shell coal gasification process, 2019 IEEE 15th International Conference on Automation Science and Engineering (CASE). August 22-26, 2019, Vancouver, BC, Canada. IEEE, 2019, pp. 861-866 [13] G. Wang and S. Wang, Advanced process control. Tsinghua University Press, Beijing, 2002 [14] R.E. Kalman, A new approach to linear filtering and prediction problems, J. Basic Eng. 82(1)(1960)35-45.https://doi.org/10.1115/1.3662552 [15] R.E. Kalman, R.S. Bucy, New results in linear filtering and prediction theory, J. Basic Eng. 83(1)(1961)95-108.https://doi.org/10.1115/1.3658902 [16] J.A. Wilson, M. Chew, W.E. Jones, State estimation-based control of a coal gasifier, IEE Proc.-Control. Theory Appl. 153(3)(2006)268-276.https://doi.org/10.1049/ip-cta:20050071 [17] A.H. Jazwinski, Stochastic processes and filtering theory (1970) https://www.researchgate.net/publication/23885861_Stochastic_Processes_And_Filtering_Theory/ [18] A. Mironova, B. Haus, A. Zedler, P. Mercorelli, Extended Kalman filter for temperature estimation and control of Peltier cells in a novel industrial milling process, IEEE Trans. Ind. Appl. 56(2)(2020)1670-1678.http://dx.doi.org/10.1109/TIA.2020.2965058 [19] M. Valipour, K.M. Toffolo, L.A. Ricardez-Sandoval, State estimation and sensor location for Entrained-Flow Gasification Systems using Kalman Filter, Control. Eng. Pract. 108(2021)104702.http://dx.doi.org/10.1016/j.conengprac.2020.104702 [20] I.S. Ye, S. Park, C. Ryu, S.K. Park, Flow and heat transfer characteristics in the syngas quench system of a 300 MWe IGCC process, Appl. Therm. Eng. 58(1-2)(2013)11-21.http://dx.doi.org/10.1016/j.applthermaleng.2013.04.006 [21] D.A. Bell, B.F. Towler, M.H. Fan, Underground coal gasification. Coal Gasification and Its Applications. Amsterdam:Elsevier, 2011:101-111.https://doi.org/10.1016/b978-0-8155-2049-8.10005-1 [22] M. Arabloo, A. Bahadori, M.M. Ghiasi, M. Lee, A. Abbas, S. Zendehboudi, A novel modeling approach to optimize oxygen-steam ratios in coal gasification process, Fuel 153(2015)1-5 [23] P. Mondal, G.S. Dang, M.O. Garg, Syngas production through gasification and cleanup for downstream applications-Recent developments, Fuel Process. Technol. 92(8)(2011)1395-1410.http://dx.doi.org/10.1016/j.fuproc.2011.03.021 [24] M. Gazzani, G. Manzolini, E. Macchi, A.F. Ghoniem, Reduced order modeling of the Shell-Prenflo entrained flow gasifier, Fuel 104(2013)822-837.http://dx.doi.org/10.1016/j.fuel.2012.06.117 [25] M. Seggiani, Modelling and simulation of time varying slag flow in a Prenflo entrained-flow gasifier, Fuel 77(14)(1998)1611-1621 [26] W. Yan, Z. Ou, and R. Cao, "Improved calculating method based on multi-zone model for utility boiler furnace," Boil. Technol., 38(5)(2007)11-14 [27] K. Ma et al., "Calculation Optimization for Enhanced Heat Transfer in boiler furnace based on multi-section models," J. Chinese Soc. Power Eng., 37(10)(2017)773-779 [28] Y.G. Zhang, Q.H. Li, H. Zhou, Heat transfer calculation in furnaces. Theory and Calculation of Heat Transfer in Furnaces. Amsterdam:Elsevier, 2016:131-172.https://doi.org/10.1016/b978-0-12-800966-6.00005-3 [29] X. Zhang, Modern Signal Processing. Tsinghua University Press, Beijing, 2002 [30] R. Isermann and M. Münchhof, Identification of dynamic systems:An introduction with applications. Springer Science&Business Media, 2010 [31] Monaghan R.F.D., Ghoniem A.F., A dynamic reduced order model for simulating entrained flow gasifiers. Part II:Model validation and sensitivity analysis, Fuel 94(2012)280-297 |