Chinese Journal of Chemical Engineering ›› 2022, Vol. 47 ›› Issue (7): 120-133.DOI: 10.1016/j.cjche.2021.02.013
Previous Articles Next Articles
Fu Yang1,2,3, Wenhao Li1, Rui Ou1, Yutong Lu1, Xuexue Dong1, Wenlong Tu1, Wenjian Zhu1, Xuyu Wang1, Lulu Li1, Aihua Yuan1, Jianming Pan2
Received:
2020-12-23
Revised:
2021-02-02
Online:
2022-08-19
Published:
2022-07-28
Contact:
Fu Yang,E-mail:fuyang@just.edu.cn;Aihua Yuan,E-mail:aihua.yuan@just.edu.cn;Jianming Pan,E-mail:pjm@ujs.edu.cn
Supported by:
Fu Yang1,2,3, Wenhao Li1, Rui Ou1, Yutong Lu1, Xuexue Dong1, Wenlong Tu1, Wenjian Zhu1, Xuyu Wang1, Lulu Li1, Aihua Yuan1, Jianming Pan2
通讯作者:
Fu Yang,E-mail:fuyang@just.edu.cn;Aihua Yuan,E-mail:aihua.yuan@just.edu.cn;Jianming Pan,E-mail:pjm@ujs.edu.cn
基金资助:
Fu Yang, Wenhao Li, Rui Ou, Yutong Lu, Xuexue Dong, Wenlong Tu, Wenjian Zhu, Xuyu Wang, Lulu Li, Aihua Yuan, Jianming Pan. Superb VOCs capture engineering carbon adsorbent derived from shaddock peel owning uncompromising thermal-stability and adsorption property[J]. Chinese Journal of Chemical Engineering, 2022, 47(7): 120-133.
Fu Yang, Wenhao Li, Rui Ou, Yutong Lu, Xuexue Dong, Wenlong Tu, Wenjian Zhu, Xuyu Wang, Lulu Li, Aihua Yuan, Jianming Pan. Superb VOCs capture engineering carbon adsorbent derived from shaddock peel owning uncompromising thermal-stability and adsorption property[J]. 中国化学工程学报, 2022, 47(7): 120-133.
[1] Z. Xueyang, G. Bin, C. Anne Elise, C. Chengcheng, L. Yuncong, Adsorption of VOCs onto engineered carbon materials:A review, J. Hazard. Mater. 338(2017)102-123 [2] B. Chen, L. Wu, B. Wu, Z. Wang, L. Yu, M. Crocker, A. Zhu, C. Shi, Catalytic materials for low concentration vocs removal through "storage-regeneration" cycling, Chem Cat Chem. 11(2019)3644-3659 [3] A. Cabanes, F.J. Valdes, A. Fullana, A review on vocs from recycled plastics, Sustain. Mater. Technol. 25(2020)00179 [4] A. Mozaffar, Y.-L. Zhang, Atmospheric volatile organic compounds (VOCs) in China:a review, Curr. Pollut. Rep. 6(2020)250-263 [5] R. Montero-Montoya, R. Lopez-Vargas, O. Arellano-Aguilar, Volatile organic compounds in air:Sources, distribution, exposure and associated illnesses in children, Ann. Glob. Health. 84(2018)225-238 [6] D. Shan, J. Yang, W. Liu, J. Yan, Z. Fan, Biomass-derived three-dimensional honeycomb-like hierarchical structured carbon for ultrahigh energy density asymmetric supercapacitors, J. Mater. Chem. A. 4(2016)13589-13602 [7] H. Vo Thi Dieu, C. Lin, T. Vu Chi, O. Nguyen Thi Kim, T. Bui Xuan, C.E. Weng, C.S. Yuan, E.R. Rene, An overview of the development of vertical sampling technologies for ambient volatile organic compounds (VOCs), J. Environ. Manag. 247(2019)401-412. [8] Q. Wang, K.L. Yeung, M.A. Banares, Ceria and its related materials for VOC catalytic combustion:A review, Catal. Today. 356(2020)141-154 [9] R.S. Andre, R.C. Sanfelice, A. Pavinatto, L.H.C. Mattoso, D.S. Correa, Hybrid nanomaterials designed for volatile organic compounds sensors:A review, Mater. Des. 156(2018)154-166 [10] C. Yang, G. Miao, Y. Pi, Q. Xia, J. Wu, Z. Li, J. Xiao, abatement of various types of vocs by adsorption/catalytic oxidation:A review, Chem. Eng. J. 370(2019)1128-1153 [11] Z. Chang, C. Wang, G. Zhang, progress in degradation of volatile organic compounds based on low-temperature plasma technology, Plasma Processes Poly. 17(2020) e1900131 [12] A.A. Adelodun, influence of operation conditions on the performance of non-thermal plasma technology for VOC pollution control, J. Ind. Eng. Chem. 92(2020)41-55 [13] J. Jose, L. Philip, Effect of various electrolytes and other wastewater constituents on the degradation of volatile organic compounds in aqueous solution by pulsed power plasma technology, Environ. Sci. Water Res. Tech. 6(2020)2209-2222 [14] X. Li, L. Zhang, Z. Yang, P. Wang, Y. Yan, J. Ran, Adsorption materials for volatile organic compounds (VOCs) and the key factors for VOCs adsorption process:a review, Sep. Purif. Tech. 235(2020)116213 [15] Z. Zhang, C. Jiang, D. Li, Y. Lei, H. Yao, G. Zhou, K. Wang, Y. Rao, W. Liu, C. Xu, X. Zhang, Micro-mesoporous activated carbon simultaneously possessing large surface area and ultra-high pore volume for efficiently adsorbing various vocs, Carbon. 170(2020)567-579 [16] H. Yi, Y. Feng, Q. Yu, X. Tang, Y. Zhang, R. Zhuang, Synthesis of divalent metal-silicalite MEL zeolites as efficient bi-functional adsorbents/catalysts for non-methane hydrocarbon in cooking oil fumes elimination, Sep. Purif. Tech. 251(2020)116213 [17] F. Yang, L. Zhou, S. Gao, X. Wang, J. Chen, A. Yuan, E.H. Ang, Combining two active states of FeOx in-situ in molecular sieve to deliver enhanced catalytic activity via creating special configuration and synergy, J. Alloys Compd. 844(2020)156137 [18] F. Yang, J. Tang, R. Ou, Z. Guo, S. Gao, Y. Wang, X. Wang, L. Chen, A. Yuan, Fully catalytic upgrading synthesis of 5-Ethoxymethylfurfural from biomass-derived 5-Hydroxymethylfurfural over recyclable layered-niobium-molybdate solid acid, Appl. Catal. B-Environ. 256(2019)117786 [19] B. Yang, Z. Zhang, C. Tian, W. Yuan, Z. Hua, S. Fan, Y. Wu, X. Tian, Selective detection of methane by HZSM-5 zeolite/Pd-SnO2 gas sensors, Sensors Actuat. B-Chem. 321(2020)128567 [20] M. Jiao, J. Huang, H. Xu, J. Jiang, Y. Guan, Y. Ma, P. Wu, ECNU-36:A quasi-pure polymorph C (H) beta silicate composed of hierarchical nanosheet crystals for effective VOCs adsorption, Angew. Chem. Int. Edit. 59(2020)17291-17296 [21] H. Deng, T. Pan, Y. Zhang, L. Wang, Q. Wu, J. Ma, W. Shan, H. He, Adsorptive removal of toluene and dichloromethane from humid exhaust on MFI, BEA and FAU zeolites:An experimental and theoretical study, Chem. Eng. J. 394(2020)124986 [22] J. Ge, Y. Zhang, S.J. Park, Recent advances in carbonaceous photocatalysts with enhanced photocatalytic performances:A mini review, Materials. 12(2019)1916 [23] Y. Yu, Q. Ma, J.B. Zhang, G.B. Liu, Electrospun TiO2-SiO2 aerogel/polyacrylonitrile composited nanofibers with enhanced adsorption performance of volatile organic compounds, Appl. Surf. Sci. 512(2020)145697 [24] X. Shen, R. Ou, Y. Lu, A. Yuan, J. Liu, X. Hu, Z. Yang, F. Yang, Engineering adsorption case for efficient capture of VOCs using biomass-based corncobs via a carbonized strategy, ChemistrySelect. 5(2020)9162-9169 [25] X. Li, L. Zhang, Z. Yang, Z. He, P. Wang, Y. Yan, J. Ran, Hydrophobic modified activated carbon using PDMS for the adsorption of VOCs in humid condition, Sep. Purif. Tech. 239(2020)116517 [26] Y. Liu, K. Mallouk, H. Emamipour, M.J. Rood, X. Liu, Z. Yan, Isobutane adsorption with carrier gas recirculation at different relative humidities using activated carbon fiber cloth and electrothermal regeneration, Chem. Eng. J. 360(2019)1011-1019 [27] Y. Wu, Q. Liu, C. Deng, L-cysteine-modified metal-organic frameworks as multifunctional probes for efficient identification of N-linked glycopeptides and phosphopeptides in human crystalline lens, Anal. Chim. Acta. 1061(2019)110-121 [28] L. Huang, R. Shen, Q. Shuai, Adsorptive removal of pharmaceuticals from water using metal-organic frameworks:A review, J. Environ. Manag. 277(2020)111389-111389 [29] K. Zhou, W. Ma, Z. Zeng, X. Ma, X. Xu, Y. Guo, H. Li, L. Li, Experimental and DFT study on the adsorption of VOCs on activated carbon/metal oxides composites, Chem. Eng. J. 372(2019)1122-1133 [30] L. Zhu, D. Shen, K.H. Luo, A critical review on VOCs adsorption by different porous materials:Species, mechanisms and modification methods, J. Hazard. Mater. 389(2020)122102 [31] S. Liu, Y. Peng, J. Chen, T. Yan, Y. Zhang, J. Liu, J. Li, A new insight into adsorption state and mechanism of adsorbates in porous materials, J. Hazard. Mater. 382(2020)121103 [32] N.H.M.H. Tehrani, M.S. Alivand, A. Rashidi, K.R. Shamskar, M. Samipoorgiri, M.D. Esrafili, D.M. Maklavany, M. Shafiei-Alavijeh, Preparation and characterization of a new waste-derived mesoporous carbon structure for ultrahigh adsorption of benzene and toluene at ambient conditions, J. Hazard. Mater. 384(2020)121317 [33] J. Pei, J.S. Zhang, Determination of adsorption isotherm and diffusion coefficient of toluene on activated carbon at low concentrations, Build. Environ. 48(2012)66-76 [34] X. Yao, Y. Liu, T. Li, T. Zhang, H. Li, W. Wang, X. Shen, F. Qian, Z. Yao, Adsorption behavior of multicomponent volatile organic compounds on a citric acid residue waste-based activated carbon:Experiment and molecular simulation, J. Hazard. Mater. 392(2020)122323 [35] R. Ma, J. Hao, G. Chang, Y. Wang, Q. Guo, Nitrogen-doping microporous adsorbents prepared from palm kernel with excellent CO2 capture property, Can. J. Chem. Eng. 98(2020)503-512 [36] K. Xiao, L.X. Ding, H. Chen, S. Wang, X. Lu, H. Wang, Nitrogen-doped porous carbon derived from residuary shaddock peel:A promising and sustainable anode for high energy density asymmetric supercapacitors, J. Mater. Chem. A. 4(2016)372-378 [37] X. Tao, Y. Wu, L. Cha, Shaddock peels-based activated carbon as cost-saving adsorbents for efficient removal of Cr (VI) and methyl orange, Environmen. Sci. Pollut. Res. 26(2019)19828-19842 [38] D. Xu, Y. Tong, T. Yan, L. Shi, D. Zhang, N, P-codoped meso-/microporous carbon derived from biomass materials via a dual-activation strategy as high-performance electrodes for deionization capacitors, ACS Sustain. Chem. Eng. 5(2017)5810-5819 [39] X. Shen, R. Ou, Y. Lu, A. Yuan, J. Liu, J. Gu, X. Hu, Z. Yang, F. Yang, Record-high capture of volatile benzene and toluene enabled by activator implant-optimized banana peel-derived engineering carbonaceous adsorbents, Environ. Int. 143(2020)105774-105774 [40] S.O. Adio, S.A. Ganiyu, M. Usman, I. Abdulazeez, K. Alhooshani, Facile and efficient nitrogen modified porous carbon derived from sugarcane bagasse for CO2 capture:Experimental and DFT investigation of nitrogen atoms on carbon frameworks, Chem. Eng. J. 382(2020)122964 [41] A. Sahoo, S. Kumar, J. Kumar, T. Bhaskar, A detailed assessment of pyrolysis kinetics of invasive lignocellulosic biomasses (Prosopis juliflora and Lantana camara) by thermogravimetric analysis, Bioresource Technol. 319(2020)124060-124060 [42] G.F. de Oliveira, R.C. de Andrade, M.A. Goncalves Trindade, H.M. Carvalho Andrade, C.T. de Carvalho, Thermogravimetric and srectrctrosopic study (TG-DTA/FT-IR) of activated carbon from the renewable biomass source babassu, Quim. Nova. 40(2017)284-292 [43] S.H. Jhung, J.-H. Lee, J.W. Yoon, C. Serre, G. Ferey, J.-S. Chang, Microwave synthesis of chromium terephthalate MIL-101 and its benzene sorption ability, Adv. Mater. 19(2007)121-132 [44] X. Wang, C. Ma, J. Xiao, Q. Xia, J. Wu, Z. Li, Benzene/toluene/water vapor adsorption and selectivity of novel C-PDA adsorbents with high uptakes of benzene and toluene, Chem. Eng. J. 335(2018)970-978 [45] M.J. Lashaki, M. Fayaz, S. Niknaddaf, Z. Hashisho, Effect of the adsorbate kinetic diameter on the accuracy of the Dubinin-Radushkevich equation for modeling adsorption of organic vapors on activated carbon, J. Hazard. Mater. 241(2012)154-163 [46] S. Proch, J. Herrmannsdoerfer, R. Kempe, C. Kern, A. Jess, L. Seyfarth, J. Senker, Pt@MOF-177:Synthesis, room-temperature hydrogen storage and oxidation catalysis, Chem. A Eur. J. 14(2008)8204-8212 [47] J.H. Kim, S.J. Lee, M.B. Kim, J.J. Lee, C.H. Lee, Sorption equilibrium and thermal regeneration of acetone and toluene vapors on an activated carbon, Ind. Eng. Chem. Res. 46(2007)4584-4594 [48] F. Qu, L. Zhu, K. Yang, Adsorption behaviors of volatile organic compounds (VOCs) on porous clay heterostructures (PCH), J. Hazard. Mater. 170(2009)7-12 [49] E. Koseoglu, C. Akmil-Basar, Preparation, structural evaluation and adsorptive properties of activated carbon from agricultural waste biomass, Adv. Powder Technol. 26(2015)811-818 [50] F. Yang, S. Ding, H. Song, N. Yan, Single-atom Pd dispersed on nanoscale anatase TiO2 for the selective hydrogenation of phenylacetylene, Sci. Chin. Mater., 63(2020)982-992 [51] X. Liu, F. Yang, S. Gao, B. Shao, S. Zhou,Y. Kong, Preparation of ZSM-5 containing vanadium and brønsted acid sites with high promoting of styrene oxidation using 30% H2O2, Chin. J. Chem. Eng., 28(2020)1302-1310 [52] S. Gao, F. Yang, C. Song, Q. Cai, R. Wang, S. Zhou, Y. Kong, Photocatalytic producing dihydroxybenzenes from phenol enabled by gathering oxygen vacancies in ultrathin porous ZnO nanosheets, Appl. Surf. Sci., 505(2020)144580 [53] J. Wang, S. Gao, X. Hu, S. Zhou, F. Yang, Y. Kong, Synergy derived from bimetal Co-Cu in phosphate to enables ultrafast catalytic hydrogenated activity in nitrophenol reduction, Chemistry Select, 5(2020)3405-3412 |
[1] | Jian Wang, Yuanhui Shen, Donghui Zhang, Zhongli Tang, Wenbin Li. Integrated vacuum pressure swing adsorption and Rectisol process for CO2 capture from underground coal gasification syngas [J]. Chinese Journal of Chemical Engineering, 2023, 57(5): 265-279. |
[2] | Xingzhong Li, Kunlin Yu, Zibo He, Bo Liu, Rongfei Zhou, Weihong Xing. Improved SSZ-13 thin membranes fabricated by seeded-gel approach for efficient CO2 capture [J]. Chinese Journal of Chemical Engineering, 2023, 56(4): 273-280. |
[3] | Zhongyao Zhang, Ming Gao, Xiaopeng Chen, Xiaojie Wei, Jiezhen Liang, Chenghong Wu, Linlin Wang. The Joule–Thomson effect of (CO2 + H2) binary system relevant to gas switching reforming with carbon capture and storage (CCS) [J]. Chinese Journal of Chemical Engineering, 2023, 54(2): 215-231. |
[4] | Yadong Li, Yuanhui Shen, Zhaoyang Niu, Junpeng Tian, Donghui Zhang, Zhongli Tang, Wenbin Li. Process analysis of temperature swing adsorption and temperature vacuum swing adsorption in VOCs recovery from activated carbon [J]. Chinese Journal of Chemical Engineering, 2023, 53(1): 346-360. |
[5] | Zhong Ma, Guofu Liu, Hui Zhang, Yonggang Lu. Investigation of the redox performance of pyrite cinder calcined at different temperature in chemical looping combustion [J]. Chinese Journal of Chemical Engineering, 2022, 48(8): 98-105. |
[6] | Vladimir S. Derevschikov, Janna V. Veselovskaya, Anton S. Shalygin, Dmitry A. Yatsenko, Andrey Z. Sheshkovas, Oleg N. Martyanov. Operating limits and features of direct air capture on K2CO3/ZrO2 composite sorbent [J]. Chinese Journal of Chemical Engineering, 2022, 46(6): 11-20. |
[7] | Ding-Ming Xue, Wen-Juan Zhang, Xiao-Qin Liu, Shi-Chao Qi, Lin-Bing Sun. Fabrication of azobenzene-functionalized porous polymers for selective CO2 capture [J]. Chinese Journal of Chemical Engineering, 2022, 43(3): 24-30. |
[8] | Xiaobin Chen, Yuting Tang, Chuncheng Ke, Chaoyue Zhang, Sichun Ding, Xiaoqian Ma. CO2 capture by double metal modified CaO-based sorbents from pyrolysis gases [J]. Chinese Journal of Chemical Engineering, 2022, 43(3): 40-49. |
[9] | Wanqiao Liang, Jihuan Huang, Penny Xiao, Ranjeet Singh, Jining Guo, Leila Dehdari, Gang Kevin Li. Amine-immobilized HY zeolite for CO2 capture from hot flue gas [J]. Chinese Journal of Chemical Engineering, 2022, 43(3): 335-342. |
[10] | Xiuxin Yu, Bing Liu, Yuanhui Shen, Donghui Zhang. Design and experiment of high-productivity two-stage vacuum pressure swing adsorption process for carbon capturing from dry flue gas [J]. Chinese Journal of Chemical Engineering, 2022, 43(3): 378-391. |
[11] | Xionghui Liu, Jianfeng Du, Yu Ye, Yuchuan Liu, Shun Wang, Xianyu Meng, Xiaowei Song, Zhiqiang Liang, Wenfu Yan. Boosting selective C2H2/CH4, C2H4/CH4 and CO2/CH4 adsorption performance via 1,2,3-triazole functionalized triazine-based porous organic polymers [J]. Chinese Journal of Chemical Engineering, 2022, 42(2): 64-72. |
[12] | Jiajia Wang, Lizhi Wang, You Wang, Du Zhang, Qin Xiao, Jianhan Huang, You-Nian Liu. Recent progress in porous organic polymers and their application for CO2 capture [J]. Chinese Journal of Chemical Engineering, 2022, 42(2): 91-103. |
[13] | Peng Tan, Yao Jiang, Qiurong Wu, Chen Gu, Shichao Qi, Qiang Zhang, Xiaoqin Liu, Linbing Sun. Light-responsive adsorbents with tunable adsorbent-adsorbate interactions for selective CO2 capture [J]. Chinese Journal of Chemical Engineering, 2022, 42(2): 104-111. |
[14] | Suisui Zhang, Jingying Li, Yan Nie, Luyao Qiang, Boyang Bai, Zhiwei Peng, Xiaoxun Ma. Life cycle assessment of HFC-134a production by calcium carbide acetylene route in China [J]. Chinese Journal of Chemical Engineering, 2022, 42(2): 236-244. |
[15] | Baowen Wang, Zhongyuan Cai, Heyu Li, Yanchen Liang, Tao Jiang, Ning Ding, Haibo Zhao. Reaction characteristics investigation of CeO2-enhanced CaSO4 oxygen carrier with lignite [J]. Chinese Journal of Chemical Engineering, 2022, 42(2): 319-328. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 32
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 201
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||