1 Huron, M.J., Vidal, J., “New mixing rules in simple equations of state for representing vapour-liquid equilibria of strongly non-Ideal mixtures”, Fluid Phase Equilibr., 3, 255-271 (1979). 2 Michelsen, M.L., “A method for incorporating excess Gibbs energy models in equations of state”, Fluid Phase Equilibr., 60, 47-58 (1990). 3 Michelsen, M.L., “A modified Huron-Vidal mixing rule for cubic equation of state”, Fluid Phase Equilibr., 60, 213-219 (1990). 4 Dahl, S., Michelsen, M.L., “High-pressure vapour-liquid equilibria with a UNIFAC-based equation of state”, AIChE J., 36 (12), 1829-1836 (1990). 5 Boukoubalas, C., Spiliotis, N., Coutsikos, P., “Prediction of vapor-liquid equilibrium with the LCVM model:A linear combination of the Vidal and Michelsen mixing rules coupled with the original UNIFAC and the t-mPR equation of state”, Fluid Phase Equilibr., 92, 75-106 (1994). 6 Wong, D.S.H, Sandler, S.I., “A theoretically correct mixing rule for cubic equations of state”, AIChE J., 38 (5), 671-680 (1992). 7 Geana, D., Feroiu, V., “Prediction of vapor-liquid equilibria at low and high pressures from UNIFAC activity coefficients at infinite dilution”, Ind. Eng. Chem. Res., 37, 1173-1180 (1998). 8 Holderbaum, T., Gmehling, J., “PSRK:A group contribution of state based on UNIFAC”, Fluid Phase Equilibr., 70, 251-256 (1991). 9 Redlich, O., Kwong, J.N.S., “On the thermodynamics of solutions (V) An equation of state, fugacities of gaseous solution”, Chem. Rev., 44, 233-244 (1949). 10 Soave, G., “Equilibrium constants from a modified Redlich-Kwong equation of state”, Chem. Eng. Sci., 27 (6), 1197-1203 (1972). 11 Peng, D.Y., Robinson, D.B., “A new two-constant equation of state”, Ind. Eng. Chem. Fundam., 15 (1), 59-64 (1976). 12 Patel, N.C., Teja, A.S., “A new cubic equation of state for fluids and fluid mixtures”, Chem. Eng. Sci., 37 (3), 263-273 (1982). 13 Stryjek, R., Vera, J.H., “An improved Peng-Robinson equation of state for pure components and for mixtures”, Can. J. Chem. Eng., 64, 323-333 (1986). 14 Mathias, P.M., Copeman, T.W., “Extension of the Peng-Robinson equation of state to complex mixtures”, Fluid Phase Equilibr., 13, 91-108 (1983). 15 Twu, C.H., Coon, J.E., Cunningham, J.R., “A new generalized alpha function for a cubic equation of state (2) Redlich-Kwong equation”, Fluid Phase Equilibr., 105, 61-69 (1995). 16 Luo, M.J., Ma, P., Xia, S.Q., “A modification of α in SRK equation of state and vapor-liquid equilibria prediction”, Chin. J. Chem. Eng., 15 (1), 102-109 (2007). 17 Graboski, M.S., Daubert, T.E., “A modified Soave equation of state for phase equilibrium calculations (1) hydrocarbon systems”, Ind. Eng. Chem. Proc. Design Dev., 4, 443-448 (1978). 18 Clever, H.L., Young, C.L., Solubility Data Series, Volume 27/28, Methane, Pergamon Press, Oxford (1987). 19 Fredenslund, A., Jones, R.L., Prausnitz, J.M., “Group contribution estimation of activity coefficients in nonideal liquid mixtures”, AIChE J., 21, 1086-1099 (1975). 20 Fischer, K., Gmehling, J., “Further development, status and results of the PSRK method for the prediction of vapor-liquid equilibria and gas solubilities”, Fluid Phase Equilibr., 121, 185-206 (1996). 21 Pitzer, K.S., Curl, R.F., “The volumetric and thermodynamic properties of fluids. Ⅲ. Empirical equation for the second virial coefficient”, J. Am. Chem. Soc., 79 (10), 2369-2370, New York (1957). 22 Smith, S.M., van Ness, H.C., Introduction to Chemical Engineering Thermodynamics, 3 edition, McGraw-Hill Book Company (1975). 23 Tsonopoulos, C., “An empirical correlation of second virial coefficients”, AIChE J., 20 (2), 263-272 (1974). 24 Orbey, H., Vera, J.H., “Correlation for the third virial coefficient using T c , P c and ω as parameters”, AIChE J., 29 (1), 107 (1983). |