[1] J. Wei. Product engineering:The third paradigm of chemical engineering, Princeton University Report, 2001 [2] J.C. Charpentier, P. Trambouze, Process engineering and problems encountered by chemical and related industries in the near future. Revolution or continuity? Chem. Eng. Process. Process. Intensif. 37 (6) (1998) 559-565. http://dx.doi.org/10.1016/S0255-2701(98)00062-2 [3] K. Wintermantel, Process and product engineering:Achievements, present and future challenges, Chem. Eng. Res. Des. 77 (3) (1999) 175-188. http://dx.doi.org/10.1205/026387699526089 [4] J. Wei, Molecular structure and property:Product engineering. Industrial & Engineering Chemistry Research. 41(2002)1917-1919 [5] E. Favre, L. Marchal-Heusler, M. Kind, Chemical product engineering:Research and educational challenges, Chem. Eng. Res. Des. 80 (1) (2002) 65-74. http://dx.doi.org/10.1205/026387602753393231 [6] E.L. Cussler, J. Wei, Chemical product engineering. American Institute of Chemical Engineers, AIChE Journal, 49(2003) 1072-1075 [7] R. Costa, G.D. Moggridge, P.M. Saraiva, Chemical product engineering:An emerging paradigm within chemical engineering, Aiche J. 52 (6) (2006) 1976-1986. http://dx.doi.org/10.1002/aic.10880 [8] Qian Y, Pan J, Jiang Y, Zhang L, Ji H. Theory and technology of chemical product engineering. Chemical Industry and Engineering Progress,22(2003)217-223. (in Chinese) [9] B.G. Li, Y.W. Luo, Production engineering:new developing space for chemical reaction engineering, Chem. Ind. Eng. Prog. (2005) 24(4)337-340 [10] J. Uhlemann, R. Costa, J.C. Charpentier, Product design and engineering-past, present, future trends in teaching, research and practices:Academic and industry points of view, Curr. Opin. Chem. Eng. 27 (2020) 10-21. http://dx.doi.org/10.1016/j.coche.2019.10.003 [11] S. Wu, H. Yamada, Y. Hayashi, M. Zamengo, R. Yoshida, Potentials and challenges of polymer informatics:Exploiting machine learning for polymer design, In:Proceeding of the Institute of Statistical Mathematics (2021 special issue) (2021) [12] B.G. Li, Y.W. Luo, W.J. Wang, H. Fan, S.P. Zhu, Polymer product engineering:an emerging discipline of chemical engineering for high performance polymer materials, Sci. Sin. Chimica (2014) 44(9)1461-1469 [13] A.J. Scott, A. Penlidis, Design of polymeric materials:Experiences and prescriptions, Can. J. Chem. Eng. 99 (1) (2021) 5-30. http://dx.doi.org/10.1002/cjce.23855 [14] Matthews F, Strange E. Novel initiators for anionic polymerization. British Patent,24(1910)790 [15] Schlenk W, Appenrodt J, Michael A, Thal A. Über Metalladditionen an mehrfache Bindungen. Berichte der deutschen chemischen Gesellschaft. 47(1914)473-490 [16] W.A. Braunecker, K. Matyjaszewski, Controlled/living radical polymerization:Features, developments, and perspectives, Prog. Polym. Sci. 32 (1) (2007) 93-146. http://dx.doi.org/10.1016/j.progpolymsci.2006.11.002 [17] G.J. Domski, J.M. Rose, G.W. Coates, A.D. Bolig, M. Brookhart, Living alkene polymerization:New methods for the precision synthesis of polyolefins, Prog. Polym. Sci. 32 (1) (2007) 30-92. http://dx.doi.org/10.1016/j.progpolymsci.2006.11.001 [18] J. Nicolas, Y. Guillaneuf, C. Lefay, D. Bertin, D. Gigmes, B. Charleux, Nitroxide-mediated polymerization, Prog. Polym. Sci. 38 (1) (2013) 63-235. http://dx.doi.org/10.1016/j.progpolymsci.2012.06.002 [19] J.S. Wang, K. Matyjaszewski, Controlled/"living" radical polymerization. atom transfer radical polymerization in the presence of transition-metal complexes, J. Am. Chem. Soc. 117 (20) (1995) 5614-5615. https://doi.org/10.1021/ja00125a035 [20] N. Corrigan, K. Jung, G. Moad, C.J. Hawker, K. Matyjaszewski, C. Boyer, Reversible-deactivation radical polymerization (Controlled/living radical polymerization):From discovery to materials design and applications, Prog. Polym. Sci. 111 (2020) 101311. http://dx.doi.org/10.1016/j.progpolymsci.2020.101311 [21] K. Matyjaszewski, J. Spanswick, Controlled/living radical polymerization, Mater. Today 8 (3) (2005) 26-33. http://dx.doi.org/10.1016/S1369-7021(05)00745-5 [22] Y.W. Luo, J. Tsavalas, F.J. Schork, Theoretical aspects of particle swelling in living free radical miniemulsion polymerization, Macromolecules 34 (16) (2001) 5501-5507. https://doi.org/10.1021/ma0020741 [23] X.G. Wang, Y.W. Luo, B.G. Li, S.P. Zhu, Ab initio batch emulsion RAFT polymerization of styrene mediated by poly(acrylic acid-b-styrene) trithiocarbonate, Macromolecules 42 (17) (2009) 6414-6421. https://doi.org/10.1021/ma9010999 [24] Y.W. Luo, X.G. Wang, Y. Zhu, B.G. Li, S.P. Zhu, Polystyrene-block-poly(n-butyl acrylate)-block-polystyrene triblock copolymer thermoplastic elastomer synthesized via RAFT emulsion polymerization, Macromolecules 43 (18) (2010) 7472-7481. https://doi.org/10.1021/ma101348k [25] Y.W. Luo, R. Wang, L. Yang, B. Yu, B.G. Li, S.P. Zhu, Effect of reversible addition-fragmentation transfer (RAFT) reactions on (mini)emulsion polymerization kinetics and estimate of RAFT equilibrium constant, Macromolecules 39 (4) (2006) 1328-1337. https://doi.org/10.1021/ma0511301 [26] Y.W. Luo, X.G. Wang, B.G. Li, S.P. Zhu, Toward well-controlled ab initio RAFT emulsion polymerization of styrene mediated by 2-(((dodecylsulfanyl)carbonothioyl)sulfanyl)propanoic acid, Macromolecules 44 (2) (2011) 221-229. https://doi.org/10.1021/ma102378w [27] C. Bian, Y.N. Zhou, Z.H. Luo, Mechanistic and kinetic investigation of Cu(II)-catalyzed controlled radical polymerization enabled by ultrasound irradiation, Aiche J. 66 (1) (2020) e16746. http://dx.doi.org/10.1002/aic.16746 [28] Y.N. Zhou, J.J. Li, Y.Y. Wu, Z.H. Luo, Role of external field in polymerization:Mechanism and kinetics, Chem. Rev. 120 (5) (2020) 2950-3048. https://pubmed.ncbi.nlm.nih.gov/32083844/ [29] R. Wang, Y.W. Luo, B.G. Li, X.Y. Sun, S.P. Zhu, Design and control of copolymer composition distribution in living radical polymerization using semi-batch feeding policies:A model simulation, Macromol. Theory Simul. 15 (4) (2006) 356-368. http://dx.doi.org/10.1002/mats.200600007 [30] R. Wang, Y.W. Luo, B.G. Li, S.P. Zhu, Control of gradient copolymer composition in ATRP using semibatch feeding policy, Aiche J. 53 (1) (2007) 174-186. http://dx.doi.org/10.1002/aic.11063 [31] X.H. Li, S.N. Liang, W.J. Wang, B.G. Li, Y.W. Luo, S.P. Zhu, Model-based production of polymer chains having precisely designed end-to-end gradient copolymer composition and chain topology distributions in controlled radical polymerization, A review, Macromol. React. Eng. 9 (5) (2015) 409-417. http://dx.doi.org/10.1002/mren.201500012 [32] Y.N. Zhou, Z.H. Luo, State-of-the-art and progress in method of moments for the model-based reversible-deactivation radical polymerization, Macromol. React. Eng. 10 (6) (2016) 516-534. http://dx.doi.org/10.1002/mren.201500080 [33] X.H. Li, E. Mastan, W.J. Wang, B.G. Li, S.P. Zhu, Progress in reactor engineering of controlled radical polymerization:A comprehensive review, React. Chem. Eng. 1 (1) (2016) 23-59. https://doi.org/10.1039/c5re00044k [34] W.J. Wang, D.M. Wang, B.G. Li, S.P. Zhu, Synthesis and characterization of hyperbranched polyacrylamide using semibatch reversible addition-fragmentation chain transfer (RAFT) polymerization, Macromolecules 43 (9) (2010) 4062-4069. https://doi.org/10.1021/ma100224v [35] D.M. Wang, X.H. Li, W.J. Wang, X. Gong, B.G. Li, S.P. Zhu, Kinetics and modeling of semi-batch RAFT copolymerization with hyperbranching, Macromolecules 45 (1) (2012) 28-38. https://doi.org/10.1021/ma202215s [36] D.M. Wang, W.J. Wang, B.G. Li, S.P. Zhu, Semibatch RAFT polymerization for branched polyacrylamide production:Effect of divinyl monomer feeding policies, Aiche J. 59 (4) (2013) 1322-1333. http://dx.doi.org/10.1002/aic.13890 [37] X.H. Li, W.J. Wang, F.Y. Weng, B.G. Li, S.P. Zhu, Targeting copolymer composition distribution via model-based monomer feeding policy in semibatch RAFT mini-emulsion copolymerization of styrene and butyl acrylate, Ind. Eng. Chem. Res. 53 (18) (2014) 7321-7332. https://doi.org/10.1021/ie402799u [38] X.H. Li, W.J. Wang, B.G. Li, S.P. Zhu, Branching in RAFT miniemulsion copolymerization of styrene/triethylene glycol dimethacrylate and control of branching density distribution, Macromol. React. Eng. 9 (2) (2015) 90-99. http://dx.doi.org/10.1002/mren.201400046 [39] Y.W. Luo, Y.L. Guo, X. Gao, B.G. Li, T. Xie, A general approach towards thermoplastic multishape-memory polymers via sequence structure design, Adv. Mater. 25 (5) (2013) 743-748. http://dx.doi.org/10.1002/adma.201202884 [40] Huang B, Liu P, Li B-G, Wabf W-J. Flocculation performances of core-shell cationic polyacrylamides tailored by semi-batch RAFT dispersion copolymerization. Journal of Chemical Engineering of Chinese Universities,34 (2020)447-456. (in Chinese) [41] W.F. Liu, S. Guo, H. Fan, W.J. Wang, B.G. Li, S.P. Zhu, Synthesis of ethylene/1-octene copolymers with controlled block structures by semibatch living copolymerization, AIChE J. 59 (12) (2013) 4686-4695. http://dx.doi.org/10.1002/aic.14204 [42] Luo L, Liu K, Jiang J, Qi M, Li Q, Liu P, et al. Engineering ethylene/1-hexene copolymers from ethylene stock with a model-guided catalyst feeding policy. Macromolecules, 55(2022) 462-71 [43] S. Förster, T. Plantenberg, From self-organizing polymers to nanohybrid and biomaterials, Angewandte Chemie Int. Ed. 41 (5) (2002) 688-714. http://dx.doi.org/10.1002/1521-3773(20020301)41:5%3C688::AID-ANIE688%3E3.0.CO;2-3 [44] P. Galli, The reactor granule technology:A revolutionary approach to polymer blends and alloys, Macromol. Symp. 78 (1) (1994) 269-284. http://dx.doi.org/10.1002/masy.19940780123 [45] G. Cecchin, G. Morini, A. Pelliconi, Polypropene product innovation by reactor granule technology, Macromol. Symp. 173 (1) (2001) 195-210. http://dx.doi.org/10.1002/1521-3900(200108)173:1%3C195::AID-MASY195%3E3.0.CO;2-A [46] M. Covezzi, G. Mei, The multizone circulating reactor technology, Chem. Eng. Sci. 56 (13) (2001) 4059-4067. http://dx.doi.org/10.1016/S0009-2509(01)00077-X [47] P. Galli, The reactor granule technology:The ultimate expansion of polypropylene properties? J. Macromol. Sci. A 36 (11) (1999) 1561-1586. http://dx.doi.org/10.1081/MA-100101615 [48] Z. Tian, X.P. Gu, G.L. Wu, L.F. Feng, Z.Q. Fan, G.H. Hu, Periodic switching of monomer additions for controlling the compositions and microstructures of segmented and random ethylene-propylene copolymers in polypropylene in-reactor alloys, Ind. Eng. Chem. Res. 50 (10) (2011) 5992-5999. https://doi.org/10.1021/ie102436u [49] Z. Tian, X.P. Gu, G.L. Wu, L.F. Feng, Z.Q. Fan, G.H. Hu, Effects of switching frequency of a periodic switching polymerization process on the microstructures of ethylene-propylene copolymers in polypropylene/poly(ethylene-co-propylene) in-reactor alloys, Ind. Eng. Chem. Res. 51 (5) (2012) 2257-2270. https://doi.org/10.1021/ie201821j [50] Y.W. Luo, H.Y. Gu, A general strategy for nano-encapsulation via interfacially confined living/controlled radical miniemulsion polymerization, Macromol. Rapid Commun. 27 (1) (2006) 21-25. http://dx.doi.org/10.1002/marc.200500649 [51] Y.W. Luo, H.Y. Gu, Nanoencapsulation via interfacially confined reversible addition fragmentation transfer (RAFT) miniemulsion polymerization, Polymer 48 (11) (2007) 3262-3272. http://dx.doi.org/10.1016/j.polymer.2007.03.042 [52] F.J. Lu, Y.W. Luo, B.G. Li, A facile route to synthesize highly uniform nanocapsules:Use of amphiphilic poly(acrylic acid)-block-polystyrene RAFT agents to interfacially confine miniemulsion polymerization, Macromol. Rapid Commun. 28 (7) (2007) 868-874. http://dx.doi.org/10.1002/marc.200600823 [53] F.J. Lu, Y.W. Luo, B.G. Li, pH effects on the synthesis of nanocapsules via interfacial miniemulsion polymerization mediated by amphiphilic RAFT agent with the R group of poly(methyl acrylic acid-ran-styrene), Ind. Eng. Chem. Res. 49 (5) (2010) 2206-2212. https://doi.org/10.1021/ie901515t [54] F.J. Lu, Y.W. Luo, B.G. Li, Q. Zhao, F.J. Schork, Synthesis of thermo-sensitive nanocapsules via inverse miniemulsion polymerization using a PEO-RAFT agent, Macromolecules 43 (1) (2010) 568-571. https://doi.org/10.1021/ma902058b [55] C.H. Ye, Y.W. Luo, X.S. Liu, Synthesis of non-collapsed hollow polymeric nanoparticles with shell thickness on the order of polymer gyration radius, Polymer 52 (3) (2011) 683-693. http://dx.doi.org/10.1016/j.polymer.2010.12.030 [56] Q. Zhang, G.Q. Yu, W.J. Wang, B.G. Li, S.P. Zhu, Preparation of CO2/N2-triggered reversibly coagulatable and redispersible polyacrylate latexes by emulsion polymerization using a polymeric surfactant, Macromol. Rapid Commun. 33 (10) (2012) 916-921. http://dx.doi.org/10.1002/marc.201200033 [57] S. Wang, Z.Y. Zhang, H.M. Zhang, A.G. Rajan, N. Xu, Y.H. Yang, Y.W. Zeng, P.W. Liu, X.H. Zhang, Q.Y. Mao, Y. He, J.J. Zhao, B.G. Li, M.S. Strano, W.J. Wang, Reversible polycondensation-termination growth of covalent-organic-framework spheres, fibers, and films, Matter 1 (6) (2019) 1592-1605. http://dx.doi.org/10.1016/j.matt.2019.08.019 [58] S. Wang, C. Zhang, Z.Y. Zhang, Y.H. Yang, Q.L. Li, W.J. Wang, B.G. Li, P.W. Liu, Asymmetrical exchange of monomers for constructing hollow nanoparticles and antifragile monoliths, Matter 4 (2) (2021) 618-634. http://dx.doi.org/10.1016/j.matt.2020.12.001 [59] P. Liu, A.T. Liu, D. Kozawa, J. Dong, J.F. Yang, V.B. Koman, M. Saccone, S. Wang, Y. Son, M.H. Wong, M.S. Strano, Autoperforation of 2D materials for generating two-terminal memristive Janus particles, Nat. Mater. 17 (11) (2018) 1005-1012. https://pubmed.ncbi.nlm.nih.gov/30353088/ [60] S. Wang, Y. Yang, H. Zhang, Z. Zhang, C. Zhang, X. Huang, D. Kozawa, P. Liu, B.G. Li, W.J. Wang, Toward covalent organic framework metastructures, J. Am. Chem. Soc. 143 (13) (2021) 5003-5010. https://pubmed.ncbi.nlm.nih.gov/33724014/ [61] H. Huang, H.S. Chen, Artificial intelligence will accelerate the development of material genome technology, Glob. Sci. Technol. Econ. Outlook (2019) (11)38-47 [62] Li B-G, Luo Y, Peng X. The state of the art and trends of chemical product engineering:Introduction to the special issue on chemical product engineering. Progress in Chemistry,30(1)(2018)1-4. (in Chinese) [63] Du S, Zhang S-Q, Wang L-Q. Lin J-P, Du L. Polymer genome approach:A new method for research and development of polymers. Acta Polymerica Sinica, 53(6) (2022)592-607. (in Chinese) [64] Liu L-Y, Ding F, Li Y-Q. Big Data approach on polymer materials:Fundamental, progress and challenge. Acta Polymerica Sinica, 6(2022)564-580. (in Chinese) [65] N. Adams, Polymer informatics. Polymer Libraries, Springer Berlin Heidelberg, 2010, pp. 107- 149 [66] D.J. Audus, J.J. de Pablo, Polymer informatics:opportunities and challenges, ACS Macro Lett. 6 (10) (2017) 1078-1082. https://pubmed.ncbi.nlm.nih.gov/29201535/ [67] C. Kim, A. Chandrasekaran, T.D. Huan, D. Das, R. Ramprasad, Polymer genome:a data-powered polymer informatics platform for property predictions, The Journal of Physical Chemistry C. 2018;122:17575-85. https://www.semanticscholar.org/paper/d563ebd6d68180c86e3ef1ef8f62075c1fe335c2 [68] L.H. Chen, G. Pilania, R. Batra, T.D. Huan, C. Kim, C. Kuenneth, R. Ramprasad, Polymer informatics:current status and critical next steps, Mater. Sci. Eng. R Rep. 144 (2021) 100595. http://dx.doi.org/10.1016/j.mser.2020.100595 |