Chinese Journal of Chemical Engineering ›› 2021, Vol. 29 ›› Issue (2): 194-203.DOI: 10.1016/j.cjche.2020.12.001
Previous Articles Next Articles
Qinghong Shi, Yan Sun
Received:
2020-10-06
Revised:
2020-11-29
Online:
2021-05-15
Published:
2021-02-28
Contact:
Yan Sun
Supported by:
Qinghong Shi, Yan Sun
通讯作者:
Yan Sun
基金资助:
Qinghong Shi, Yan Sun. Protein A-based ligands for affinity chromatography of antibodies[J]. Chinese Journal of Chemical Engineering, 2021, 29(2): 194-203.
Qinghong Shi, Yan Sun. Protein A-based ligands for affinity chromatography of antibodies[J]. 中国化学工程学报, 2021, 29(2): 194-203.
Add to citation manager EndNote|Ris|BibTeX
URL: https://cjche.cip.com.cn/EN/10.1016/j.cjche.2020.12.001
[1] J.M. Reichert, C.J. Rosensweig, L.B. Faden, M.C. Dewitz, Monoclonal antibody successes in the clinic, Nat. Biotechnol. 23 (2005) 1073–1078. [2] J.M. Reichert, Marketed therapeutic antibodies compendium, Mabs-Austin 4 (2012) 413–415. [3] G. Walsh, Biopharmaceutical benchmarks 2018, Nat. Biotechnol. 36 (2018) 1136–1145. [4] B.G. de la Torre, F. Albericio, The pharmaceutical industry in 2019. An analysis of FDA drug approvals from the perspective of molecules, Molecules 25 (2020) 745. [5] R. Mathaes, H.C. Mahler, Next generation biopharmaceuticals: product development, Adv. Biochem. Eng. Biot. 165 (2018) 253–276. [6] R.M. Lu, Y.C. Hwang, I.J. Liu, C.C. Lee, H.Z. Tsai, H.J. Li, H.C. Wu, Development of therapeutic antibodies for the treatment of diseases, J. Biomed. Sci. 27 (2020) 1. [7] J.R. Birch, A.J. Racher, Antibody production, Adv. Drug Deliver. Rev. 58 (2006) 671–685. [8] F. Li, N. Vijayasankaran, A. Shen, R. Kiss, A. Amanullah, Cell culture processes for monoclonal antibody production, Mabs 2 (2010) 466–479. [9] A.A. Shukla, J. Thommes, Recent advances in large-scale production of monoclonal antibodies and related proteins, Trends Biotechnol. 28 (2010) 253–261. [10] C.L. Gaughan, The present state of the art in expression, production and characterization of monoclonal antibodies, Mol. Divers 20 (2016) 255–270. [11] J.M. Bielser, M. Wolf, J. Souquet, H. Broly, M. Morbidelli, Perfusion mammalian cell culture for recombinant protein manufacturing –A critical review, Biotechnol. Adv. 36 (2018) 1328–1340. [12] R. Kunert, D. Reinhart, Advances in recombinant antibody manufacturing, Appl. Microbiol. Biot. 100 (2016) 3451–3461. [13] M.E. Rodrigues, A.R. Costa, M. Henriques, J. Azeredo, R. Oliveira, Technological progresses in monoclonal antibody production systems, Biotechnol. Prog. 26 (2010) 332–351. [14] D. Low, R. O’Leary, N.S. Pujar, Future of antibody purification, J. Chromatogr. B 848 (2007) 48–63. [15] N. Singh, S. Herzer, Downstream processing technologies/capturing and final purification opportunities for innovation, change, and improvement. A review of downstream processing developments in protein purification, Adv. Biochem. Eng. Biot. 165 (2018) 115–178. [16] A. Jungbauer, R. Hahn, Engineering protein A affinity chromatography, Curr. Opin. Drug Disc. 7 (2004) 248–256. [17] M. Vazquez-Rey, D.A. Lang, Aggregates in monoclonal antibody manufacturing processes, Biotechnol. Bioeng. 108 (2011) 1494–1508. [18] H.F. Liu, J.F. Ma, C. Winter, R. Bayer, Recovery and purification process development for monoclonal antibody production, Mabs 2 (2010) 480–499. [19] A.L. Zydney, Continuous downstream processing for high value biological products: A review, Biotechnol. Bioeng. 113 (2016) 465–475. [20] G.R. Bolton, K.K. Mehta, The role of more than 40 years of improvement in protein A chromatography in the growth of the therapeutic antibody industry, Biotechnol. Prog. 32 (2016) 1193–1202. [21] A.A. Shukla, B. Hubbard, T. Tressel, S. Guhan, D. Low, Downstream processing of monoclonal antibodies –Application of platform approaches, J. Chromatogr. B 848 (2007) 28–39. [22] A. Forsgren, J. Sjoquist, “Protein A” from S. aureus. I. Pseudo-immune reaction with human gamma-globulin, J. Immunol. 97 (1966) 822–827. [23] M. Graille, E.A. Stura, A.L. Corper, B.J. Sutton, M.J. Taussig, J.B. Charbonnier, G.J. Silverman, Crystal structure of a Staphylococcus aureus protein A domain complexed with the Fab fragment of a human IgM antibody: Structural basis for recognition of B-cell receptors and superantigen activity, Proc. Natl. Acad. Sci. USA 97 (2000) 5399–5404. [24] M.D.P. Boyle, The type I bacterial immunoglobulin-binding protein: Staphylococcal protein A, in: M.D.P. Boyle (Ed.), Bacterial Immunoglobulinbinding Proteins: Microbiology, Chemistry, and Biology, Academic Press, San Diego, 1990, pp. 17–28. [25] P.L. Ey, S.J. Prowse, C.R. Jenkin, Isolation of pure IgG1, IgG2a and IgG2b immunoglobulins from mouse serum using protein A-sepharose, Immunochemistry 15 (1978) 429–436. [26] B. Nilsson, T. Moks, B. Jansson, L. Abrahmsen, A. Elmblad, E. Holmgren, C. Henrichson, T.A. Jones, M. Uhlen, A synthetic IgG-binding domain based on staphylococcal protein A, Protein Eng. 1 (1987) 107–113. [27] R.M. Bao, H.M. Yang, C.M. Yu, J.B. Tang, Oriented covalent immobilization of engineered ZZ-Cys onto Maleimide-Sepharose: An affinity platform for IgG purification, Chromatographia 79 (2016) 1271–1276. [28] E. Muller, J. Vajda, Routes to improve binding capacities of affinity resins demonstrated for Protein A chromatography, J. Chromatogr. B 1021 (2016) 159–168. [29] R. Hahn, R. Schlegel, A. Jungbauer, Comparison of protein A affinity sorbents, J. Chromatogr. B 790 (2003) 35–51. [30] T.M. Pabst, J. Thai, A.K. Hunter, Evaluation of recent Protein A stationary phase innovations for capture of biotherapeutics, J. Chromatogr. A 1554 (2018) 45–60. [31] S. Graslund, P. Nordlund, J. Weigelt, J. Bray, B.M. Hallberg, O. Gileadi, S. Knapp, U. Oppermann, C. Arrowsmith, R. Hui, J. Ming, S. Dhe-Paganon, H.W. Park, A. Savchenko, A. Yee, A. Edwards, R. Vincentelli, C. Cambillau, R. Kim, S.H. Kim, Z. Rao, Y. Shi, T.C. Terwilliger, C.Y. Kim, L.W. Hung, G.S. Waldo, Y. Peleg, S. Albeck, T. Unger, O. Dym, J. Prilusky, J.L. Sussman, R.C. Stevens, S.A. Lesley, I.A. Wilson, A. Joachimiak, F. Collart, I. Dementieva, M.I. Donnelly, W.H. Eschenfeldt, Y. Kim, L. Stols, R. Wu, M. Zhou, S.K. Burley, J.S. Emtage, J.M. Sauder, D. Thompson, K. Bain, J. Luz, T. Gheyi, F. Zhang, S. Atwell, S.C. Almo, J. B. Bonanno, A. Fiser, S. Swaminathan, F.W. Studier, M.R. Chance, A. Sali, T.B. Acton, R. Xiao, L. Zhao, L.C. Ma, J.F. Hunt, L. Tong, K. Cunningham, M. Inouye, S. Anderson, H. Janjua, R. Shastry, C.K. Ho, D.Y. Wang, H. Wang, M. Jiang, G.T. Montelione, D.I. Stuart, R.J. Owens, S. Daenke, A. Schutz, U. Heinemann, S. Yokoyama, K. Bussow, K.C. Gunsalus, S.G. Consortium, A.F. Macromol, B.S.G. Ctr, C.S.G. Consortium, I.C.S. Function, I.S.P. Ctr, J.C.S. Genomics, M.C.S. Genomics, N.Y.S.G.R. Ctr, N.S.G. Consortium, O.P.P. Facility, P.S.P. Facility, M.D. C.M. Med, R.S.G. Proteomics, S. Complexes, Protein production and purification, Nat. Methods 5 (2008) 135–146. [32] K. Jensen, A normally occurring staphylococcus antibody in human serum, Acta Path. Microbiol. Scand. 44 (1958) 421–428. [33] A.B. Robinson, C.J. Rudd, Deamidation of glutaminyl and asparaginyl residues in peptides and proteins, Curr. Top. Cell. Regul. 8 (1974) 247–295. [34] N.E. Robinson, Protein deamidation, Proc. Natl. Acad. Sci. USA 99 (2002) 5283–5288. [35] N.E. Robinson, A.B. Robinson, Deamidation of human proteins, Proc. Natl. Acad. Sci. USA 98 (2001) 12409–12413. [36] A. Gronberg, M. Eriksson, M. Ersoy, H.J. Johansson, A tool for increasing the lifetime of chromatography resins, Mabs 3 (2011) 192–202. [37] L. Wang, J. Dembecki, N.E. Jaffe, B.W. O’Mara, H. Cai, C.N. Sparks, J. Zhang, S.G. Laino, R.J. Russell, M. Wang, A safe, effective, and facility compatible cleaning in place procedure for affinity resin in large-scale monoclonal antibody purification, J. Chromatogr. A 1308 (2013) 86–95. [38] S. Gulich, M. Linhult, S. Stahl, S. Hober, Engineering streptococcal protein G for increased alkaline stability, Protein Eng. 15 (2002) 835–842. [39] M. Linhult, S. Gulich, T. Graslund, A. Simon, M. Karlsson, A. Sjoberg, K. Nord, S. Hober, Improving the tolerance of a protein a analogue to repeated alkaline exposures using a bypass mutagenesis approach, Proteins 55 (2004) 407–416. [40] B. Palmer, K. Angus, L. Taylor, J. Warwicker, J.P. Derrick, Design of stability at extreme alkaline pH in streptococcal protein G, J. Biotechnol. 134 (2008) 222–230. [41] Z.-L. Guan, S. Bai, Y. Sun, Q.-H. Shi, Construction and characteristics of alkalitolerance mutants of Z domain for protein A chromatography, CIESC J. 68 (2017) 3459–3465. (in Chinese). [42] K. Minakuchi, D. Murata, Y. Okubo, Y. Nakano, S. Yoshida, Remarkable alkaline stability of an engineered protein A as immunoglobulin affinity ligand: C domain having only one amino acid substitution, Protein Sci. 22 (2013) 1230–1238. [43] G. Fassina, A. Verdoliva, G. Palombo, M. Ruvo, G. Cassani, Immunoglobulin specificity of TG19318: a novel synthetic ligand for antibody affinity purification, J. Mol. Recognit. 11 (1998) 128–133. [44] R.X. Li, V. Dowd, D.J. Stewart, S.J. Burton, C.R. Lowe, Design, synthesis, and application of a Protein A mimetic, Nat. Biotechnol. 16 (1998) 190–195. [45] E. Boschetti, Antibody separation by hydrophobic charge induction chromatography, Trends Biotechnol. 20 (2002) 333–337. [46] S. Ghose, B. Hubbard, S.M. Cramer, Evaluation and comparison of alternatives to Protein A chromatography - Mimetic and hydrophobic charge induction chromatographic stationary phases, J. Chromatogr. A 1122 (2006) 144–152. [47] Q.H. Shi, Z. Cheng, Y. Sun, 4-(1H-imidazol-1-yl) aniline: A new ligand of mixed-mode chromatography for antibody purification, J. Chromatogr. A 1216 (2009) 6081–6087. [48] S. Gulich, M. Linhult, P.A. Nygren, M. Uhlen, S. Hober, Stability towards alkaline conditions can be engineered into a protein ligand, J. Biotechnol. 80 (2000) 169–178. [49] S. Yoshida, D. Murata, S. Taira, K. Iguchi, M. Takano, Y. Nakano, K. Minakuchi, Rational design and engineering of protein A to obtain the controlled elution profile in monoclonal antibody purification, Chem.-Bio Inform. J. 12 (2012) 1–13. [50] S. Gülich, M. Uhlen, S. Hober, Protein engineering of an IgG-binding domain allows milder elution conditions during affinity chromatography, J. Biotechnol. 76 (2000) 233–244. [51] H.F. Xia, Z.D. Liang, S.L. Wang, P.Q. Wu, X.H. Jin, Molecular modification of protein A to Improve the Elution pH and alkali resistance in affinity chromatography, Appl. Biochem. Biotechnol. 172 (2014) 4002–4012. [52] H. Watanabe, H. Matsumaru, A. Ooishi, S. Honda, Structure-based histidine substitution for optimizing pH-sensitive Staphylococcus protein A, J. Chromatogr. B 929 (2013) 155–160. [53] G. Rodrigo, M. Ander, G. Bauren, T. Bjoerkman, Mutated immunoglobulinbinding polypeptides, in: U.S.P. Office (Ed.), Patent Application Publication, GE Healthcare Bio-Sciences AB, United States, 2016, p. 23. [54] E. Fiedler, U. Haupts, Fc binding proteins with cysteine in the C-terminal helical region, in: U.S.P. Office (Ed.), Patent Application Publication, Repligen Corporation, United States, 2020, p. 53. [55] L. Zhao, K. Zhu, Y.D. Huang, Q. Li, X.N. Li, R.Y. Zhang, Z.G. Su, Q.B. Wang, G.H. Ma, Enhanced binding by dextran-grafting to Protein A affinity chromatographic media, J. Sep. Sci. 40 (2017) 1493–1499. [56] X.H. Yang, L.M. Huan, X.S. Chu, Y. Sun, Q.H. Shi, A comparative investigation of random and oriented immobilization of protein A ligands on the binding of immunoglobulin G, Biochem. Eng. J. 139 (2018) 15–24. [57] L. Yu, L. Zhang, Y. Sun, Protein behavior at surfaces: Orientation, conformational transitions and transport, J. Chromatogr. A 1382 (2015) 118–134. [58] Y. Tao, G. Carta, Rapid monoclonal antibody adsorption on dextran-grafted agarose media for ion-exchange chromatography, J. Chromatogr. A 1211 (2008) 70–79. [59] S. Ghose, B. Hubbard, S.M. Cramer, Binding capacity differences for antibodies and Fc-fusion proteins on protein A chromatographic materials, Biotechnol. Bioeng. 96 (2007) 768–779. [60] M.F. von Roman, S. Berensmeier, Improving the binding capacities of protein A chromatographic materials by means of ligand polymerization, J. Chromatogr. A 1347 (2014) 80–86. [61] L.S. Wong, F. Khan, J. Micklefield, Selective Covalent Protein Immobilization: Strategies and Applications, Chem. Rev. 109 (2009) 4025–4053. [62] X.F. Zhang, Y. Duan, X. Zeng, Improved performance of recombinant protein A mobilized on agarose beads by site-specific conjugation, ACS Omega 2 (2017) 1731–1737. [63] N. Tajima, M. Takai, K. Ishihara, Significance of antibody orientation unraveled: well-oriented antibodies recorded high binding affinity, Anal. Chem. 83 (2011) 1969–1976. [64] H.M. Yang, R.M. Bao, Y.Z. Cheng, J.B. Tang, Site-specific covalent attachment of an engineered Z-domain onto a solid matrix: An efficient platform for 3D IgG immobilization, Anal. Chim. Acta 872 (2015) 1–6. [65] F. Rusmini, Z.Y. Zhong, J. Feijen, Protein immobilization strategies for protein biochips, Biomacromolecules 8 (2007) 1775–1789. [66] K. Hernandez, R. Fernandez-Lafuente, Control of protein immobilization: Coupling immobilization and site-directed mutagenesis to improve biocatalyst or biosensor performance, Enzyme Microb. Tech. 48 (2011) 107–122. [67] C. Garcia-Galan, A. Berenguer-Murcia, R. Fernandez-Lafuente, R.C. Rodrigues, Potential of different enzyme immobilization strategies to improve enzyme performance, Adv. Synth. Catal. 353 (2011) 2885–2904. [68] M.E. Wiseman, C.W. Frank, Antibody adsorption and orientation on hydrophobic surfaces, Langmuir 28 (2012) 1765–1774. [69] H.O. Yang, P.V. Gurgel, R.G. Carbonell, Purification of human immunoglobulin G via Fc-specific small peptide ligand affinity chromatography, J. Chromatogr. A 1216 (2009) 910–918. [70] Y. Luo, Q. Zhang, S. Yao, D. Lin, Adsorption behaviors of avian immunoglobulins and purification of immunoglobulin Y from chicken serum with mixed-mode resins, Chin. J. Chem. Eng. 27 (2019) 514–518. [71] N. Kruljec, T. Bratkovic, Alternative affinity ligands for immunoglobulins, Bioconjug. Chem. 28 (2017) 2009–2030. [72] G.F. Zhao, X.Y. Dong, Y. Sun, Ligands for mixed-mode protein chromatography: Principles, characteristics and design, J. Biotechnol. 144 (2009) 3–11. [73] Y.M. Fang, D.Q. Lin, S.J. Yao, Review on biomimetic affinity chromatography with short peptide ligands and its application to protein purification, J. Chromatogr. A 1571 (2018) 1–15. [74] E. Carredano, H. Baumann, A. Gronberg, N. Norrman, G. Glad, J.Y. Zou, O. Ersoy, E. Steensma, A. Axen, A novel and conserved pocket of human kappaFab fragments: Design, synthesis, and verification of directed affinity ligands, Protein Sci. 13 (2004) 1476–1488. [75] S. Chen, T. Liu, R. Yang, D. Lin, S. Yao, Preparation of copolymer-grafted mixed-mode resins for immunoglobulin G adsorption, Front. Chem. Sci. Eng. 13 (2019) 70–79. [76] H. Yang, P.V. Gurgel, R.G. Carbonell, Hexamer peptide affinity resins that bind the Fc region of human immunoglobulin G, J. Pept. Res. 66 (2005) 120–137. [77] W.W. Zhao, F.F. Liu, Q.H. Shi, Y. Sun, Octapeptide-based affinity chromatography of human immunoglobulin G: Comparisons of three different ligands, J. Chromatogr. A 1359 (2014) 100–111. [78] X. Zou, Q. Zhang, H. Lu, D. Lin, S. Yao, Development of a hybrid biomimetic ligand with high selectivity and mild elution for antibody purification, Chem. Eng. J. 368 (2019) 678–686. [79] D.G. Wei, X.L. Jiang, L. Zhou, J. Chen, Z. Chen, C. He, K. Yang, Y. Liu, J.F. Pei, L.H. Lai, Discovery of multitarget inhibitors by combining molecular docking with common pharmacophore matching, J. Med. Chem. 51 (2008) 7882–7888. [80] B. Huang, F.F. Liu, X.Y. Dong, Y. Sun, Molecular mechanism of the affinity interactions between protein A and human innmunoglobulin G1 revealed by molecular simulations, J. Phys. Chem. B 115 (2011) 4168–4176. [81] W.W. Zhao, F.F. Liu, Q.H. Shi, X.Y. Dong, Y. Sun, Biomimetic design of affinity peptide ligands for human IgG based on protein A-IgG complex, Biochem. Eng. J. 88 (2014) 1–11. [82] O. Trott, A.J. Olson, Software news and update AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading, J. Comput. Chem. 31 (2010) 455–461. [83] W.W. Zhao, Q.H. Shi, Y. Sun, FYWHCLDE-based affinity chromatography of IgG: Effect of ligand density and purifications of human IgG and monoclonal antibody, J. Chromatogr. A 1355 (2014) 107–114. [84] Y.Y. Li, X.D. Liu, X.Y. Dong, L. Zhang, Y. Sun, Biomimetic design of affinity peptide ligand for capsomere of virus-like particle, Langmuir 30 (2014) 8500–8508. [85] L. Zhang, Y. Sun, Biomimetic design of platelet adhesion inhibitors to block integrin alpha 2 beta 1-collagen interactions: I. Construction of an affinity binding model, Langmuir 30 (2014) 4725–4733. [86] P. Arosio, S. Rima, M. Morbidelli, Aggregation mechanism of an IgG2 and two IgG1 monoclonal antibodies at low pH: From oligomers to larger aggregates, Pharm. Res. 30 (2013) 641–654. [87] R.K. Brummitt, D.P. Nesta, L. Chang, S.F. Chase, T.M. Laue, C.J. Roberts, Nonnative aggregation of an IgG1 antibody in acidic conditions: Part 1. Unfolding, colloidal interactions, and formation of high-molecular-weight aggregates, J. Pharm. Sci. 100 (2011) 2087–2103. [88] W.W. Zhao, Q.H. Shi, Y. Sun, Dual-ligand affinity systems with octapeptide ligands for affinity chromatography of hIgG and monoclonal antibody, J. Chromatogr. A 1369 (2014) 64–72. [89] H.O. Yang, P.V. Gurgel, D.K. Williams, B.G. Bobay, J. Cavanagh, D.C. Muddiman, R.G. Carbonell, Binding site on human immunoglobulin G for the affinity ligand HWRGWV, J. Mol. Recognit. 23 (2010) 271–282. [90] A.D. Naik, S. Menegatti, P.V. Gurgel, R.G. Carbonell, Performance of hexamer peptide ligands for affinity purification of immunoglobulin G from commercial cell culture media, J. Chromatogr. A 1218 (2011) 1691–1700. [91] G. Fassina, A. Verdoliva, M.R. Odierna, M. Ruvo, G. Cassini, Protein A mimetic peptide ligand for affinity purification of antibodies, J. Mol. Recognit. 9 (1996) 564–569. [92] R. Hahn, P. Bauerhansl, K. Shimahara, C. Wizniewski, A. Tscheliessnig, A. Jungbauer, Comparison of protein A affinity sorbents II. Mass transfer properties, J. Chromatogr. A 1093 (2005) 98–110. [93] J. Deisenhofer, Crystallographic refinement and atomic models of a human Fc fragment and its complex with fragment B of protein A from Staphylococcus aureus at 2.9- and 2.8-A resolution, Biochemistry 20 (1981) 2361–2370. [94] R. Huber, J. Deisenhofer, P.M. Colman, M. Matsushima, W. Palm, Crystallographic structure studies of an IgG molecule and an Fc fragment, Nature 264 (1976) 415–420. [95] M. Ultsch, A. Braisted, H.R. Maun, C. Eigenbrot, 3-2-1: Structural insights from stepwise shrinkage of a three-helix Fc-binding domain to a single helix, Protein Eng. Des. Sel. 30 (2017) 619–625. [96] N. Goel, S. Stephens, Certolizumab pegol, Mabs 2 (2010) 137–147. [97] A. Beck, J.M. Reichert, Approval of the first biosimilar antibodies in Europe A major landmark for the biopharmaceutical industry, Mabs 5 (2013) 621–623. [98] A. Beck, Biosimilar, biobetter and next generation therapeutic antibodies, Mabs 3 (2011) 107–110. [99] A. Nascimento, I.F. Pinto, V. Chu, M. Raquel Aires-Barros, J.P. Conde, A.M. Azevedo, Studies on the purification of antibody fragments, Sep. Purif. Technol. 195 (2018) 388–397. [100] H.Y. Wang, Y. Sun, S.L. Zhang, J. Luo, Q.H. Shi, Fabrication of high-capacity cation-exchangers for protein chromatography by atom transfer radical polymerization, Biochem. Eng. J. 113 (2016) 19–29. [101] A.M. Lenhoff, Protein adsorption and transport in polymer-functionalized ion-exchangers, J. Chromatogr. A 1218 (2011) 8748–8759. [102] Y.M. Fang, H.Y. Zhu, D.Q. Lin, S.J. Yao, A novel dextran-grafted tetrapeptide resin for antibody purification, J. Sep. Sci. 43 (2020) 3816–3823. [103] J. Zdarta, A.S. Meyer, T. Jesionowski, M. Pinelo, A general overview of support materials for enzyme immobilization: characteristics, properties, practical utility, Catalysts 8 (2018) 92. [104] Z. Wang, Y. Shen, Q.H. Shi, Y. Sun, Insights into the molecular structure of immobilized protein A ligands on dextran-coated nanoparticles: Comprehensive spectroscopic investigation, Biochem. Eng. J.146(2019) 20–30. [105] H. Xu, X.B. Zhao, C. Grant, J.R. Lu, D.E. Williams, J. Penfold, Orientation of a monoclonal antibody adsorbed at the solid/solution interface: A combined study using atomic force microscopy and neutron reflectivity, Langmuir 22 (2006) 6313–6320. [106] J.G. Vilhena, A.C. Dumitru, E.T. Herruzo, J.I. Mendieta-Moreno, R. Garcia, P.A. Serena, R. Perez, Adsorption orientations and immunological recognition of antibodies on graphene, Nanoscale 8 (2016) 13463–13475. |
[1] | Suhang Xun, Cancan Wu, Lida Tang, Mengmeng Yuan, Haofeng Chen, Minqiang He, Wenshuai Zhu, Huaming Li. One-pot in-situ synthesis of coralloid supported VO2 catalyst for intensified aerobic oxidative desulfurization [J]. Chinese Journal of Chemical Engineering, 2023, 56(4): 136-140. |
[2] | Yu Kiat Lin, Yan-Na Sun, Yu Fan, Hui Yi Leong, Dong-Qiang Lin, Shan-Jing Yao. UV/Vis-based process analytical technology to improve monoclonal antibody and host cell protein separation [J]. Chinese Journal of Chemical Engineering, 2023, 55(3): 230-235. |
[3] | Yi Shen, Xinshuang Chu, Qinghong Shi. Unraveling structure and performance of protein a ligands at liquid–solid interfaces: A multi-techniques analysis [J]. Chinese Journal of Chemical Engineering, 2023, 54(2): 232-239. |
[4] | Dahai Jiang, Zhidi Min, Jing Leng, Huanqing Niu, Yong Chen, Dong Liu, Chenjie Zhu, Ming Li, Wei Zhuang, Hanjie Ying. Characterization of two halophilic adenylate cyclases from Thermobifida halotolerans and Haloactinopolyspora alba [J]. Chinese Journal of Chemical Engineering, 2023, 53(1): 56-62. |
[5] | Wei Liu, Xueting Sun, Xiaoyan Dong, Yan Sun. Chiral LVFFARK enantioselectively inhibits amyloid-β protein fibrillogenesis [J]. Chinese Journal of Chemical Engineering, 2022, 48(8): 227-235. |
[6] | Qingxia Xiong, Ying Ren, Yufei Xia, Guanghui Ma, Reiji Noda, Wei Ge. Molecular dynamics simulations of ovalbumin adsorption at squalene/water interface [J]. Chinese Journal of Chemical Engineering, 2022, 50(10): 369-378. |
[7] | Pingwei Liu, Jigang Du, Yuting Ma, Qingyue Wang, Khak Ho Lim, Bo-Geng Li. Progress of polymer reaction engineering: From process engineering to product engineering [J]. Chinese Journal of Chemical Engineering, 2022, 50(10): 3-11. |
[8] | Saboura Ashkevarian, Jalil Badraghi, Fatemeh Mamashli, Behdad Delavari, Ali Akbar Saboury. Covalent immobilization and characterization of Rhizopus oryzae lipase on core-shell cobalt ferrite nanoparticles for biodiesel production [J]. Chinese Journal of Chemical Engineering, 2021, 37(9): 128-136. |
[9] | Yingnan Si, Arin L. Melkonian, Keegan C. Curry, Yuanxin Xu, Maranda Tidwell, Mingming Liu, Ahmed F. Zaky, Xiaoguang (Margaret) Liu. Monoclonal antibody-based cancer therapies [J]. Chinese Journal of Chemical Engineering, 2021, 29(2): 301-307. |
[10] | Yangyang Zhao, Xianxiu Li, Linling Yu, Xiaoyan Dong, Yan Sun. Lysozyme adsorption to cation exchanger derivatized by sequential modification of poly(ethylenimine)-Sepharose with succinic anhydride and ethanolamine: Effect of pH and ionic strength [J]. Chinese Journal of Chemical Engineering, 2020, 28(2): 440-444. |
[11] | Shu Bai, Lingli Gong, Detao Han, Yutong Li, Linling Yu, Yan Sun. Protein adsorption onto diethylaminoethyl dextran modified anion exchanger: Effect of ionic strength and column behavior [J]. Chin.J.Chem.Eng., 2018, 26(2): 259-267. |
[12] | Yu Mi, Yuan Gao, Daidi Fan, Zhiguang Duan, Rongzhan Fu, Lihua Liang, Wenjiao Xue, Shanshan Wang. Stability improvement of human collagen α1(I) chain using insulin as a fusion partner [J]. Chin.J.Chem.Eng., 2018, 26(12): 2607-2614. |
[13] | LUO Man, GUAN Yixin, YAO Shanjing. Optimization of DsbA Purification from Recombinant Escherichia coli Broth Using Box-Behnken Design Methodology [J]. Chin.J.Chem.Eng., 2013, 21(2): 185-191. |
[14] | DIAO Xiang, WANG Yujun, ZHAO Junqi, ZHU Shenlin. Effect of Pore-size of Mesoporous SBA-15 on Adsorption of Bovine Serum Albumin and Lysozyme Protein [J]. , 2010, 18(3): 493-499. |
[15] | YANG Gensheng, YING Li, OU Zhimin, YAO Shanjing. Resolution of Ibuprofen Ester by Catalytic Antibodies in Water-miscible Organic-solvents [J]. , 2009, 17(3): 506-512. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||