Chinese Journal of Chemical Engineering ›› 2022, Vol. 51 ›› Issue (11): 75-85.DOI: 10.1016/j.cjche.2021.11.024
Previous Articles Next Articles
Mohamed A. Almaradhi, Hassan M.A. Hassan, Mosaed S. Alhumaimess
Received:
2021-08-07
Revised:
2021-10-02
Online:
2023-01-18
Published:
2022-11-18
Contact:
Mosaed S. Alhumaimess,E-mail:mosaed@ju.edu.sa
Supported by:
Mohamed A. Almaradhi, Hassan M.A. Hassan, Mosaed S. Alhumaimess
通讯作者:
Mosaed S. Alhumaimess,E-mail:mosaed@ju.edu.sa
基金资助:
Mohamed A. Almaradhi, Hassan M.A. Hassan, Mosaed S. Alhumaimess. Fe3O4-carbon spheres core–shell supported palladium nanoparticles: A robust and recyclable catalyst for suzuki coupling reaction[J]. Chinese Journal of Chemical Engineering, 2022, 51(11): 75-85.
Mohamed A. Almaradhi, Hassan M.A. Hassan, Mosaed S. Alhumaimess. Fe3O4-carbon spheres core–shell supported palladium nanoparticles: A robust and recyclable catalyst for suzuki coupling reaction[J]. 中国化学工程学报, 2022, 51(11): 75-85.
Add to citation manager EndNote|Ris|BibTeX
URL: https://cjche.cip.com.cn/EN/10.1016/j.cjche.2021.11.024
[1] A.F. Hassan, H. Elhadidy, Effect of Zr+4 doping on characteristics and sonocatalytic activity of TiO2/carbon nanotubes composite catalyst for degradation of chlorpyrifos, J. Phys. Chem. Solids 129 (2019) 180-187. http://dx.doi.org/10.1016/j.jpcs.2019.01.018 [2] S. Sajjadi, A. Khataee, R. Darvishi Cheshmeh Soltani, A. Hasanzadeh, N, S co-doped graphene quantum dot-decorated Fe3O4 nanostructures:Preparation, characterization and catalytic activity, J. Phys. Chem. Solids 127 (2019) 140-150. [3] C.Q. Lin, W. Wei, Y.H. Hu, Catalytic behavior of graphene oxide for cement hydration process, J. Phys. Chem. Solids 89 (2016) 128-133. http://dx.doi.org/10.1016/j.jpcs.2015.11.002 [4] K.J. Chen, W.J. Fan, C.J. Huang, X.Q. Qiu, Enhanced stability and catalytic activity of bismuth nanoparticles by modified with porous silica, J. Phys. Chem. Solids 110 (2017) 9-14. http://dx.doi.org/10.1016/j.jpcs.2017.05.025 [5] P. Avouris, C. Dimitrakopoulos, Graphene:Synthesis and applications, Mater. Today 15 (3) (2012) 86-97. http://dx.doi.org/10.1016/S1369-7021(12)70044-5 [6] D.C. Marcano, D.V. Kosynkin, J.M. Berlin, A. Sinitskii, Z.Z. Sun, A.S. Slesarev, L.B. Alemany, W. Lu, J.M. Tour, Correction to improved synthesis of graphene oxide, ACS Nano 12 (2) (2018) 2078. https://www.ncbi.nlm.nih.gov/pubmed/29328621/ [7] H.W. Zhu, C.L. Xu, D.H. Wu, B.Q. Wei, R. Vajtai, P.M. Ajayan, Direct synthesis of long single-walled carbon nanotube strands, Science 296 (5569) (2002) 884-886. https://www.ncbi.nlm.nih.gov/pubmed/11988567/ [8] H.C. Kuan, C.C.M. Ma, W.P. Chang, S.M. Yuen, H.H. Wu, T.M. Lee, Synthesis, thermal, mechanical and rheological properties of multiwall carbon nanotube/waterborne polyurethane nanocomposite, Compos. Sci. Technol. 65 (11-12) (2005) 1703-1710. http://dx.doi.org/10.1016/j.compscitech.2005.02.017 [9] R. Wang, K.Q. Lu, Z.R. Tang, Y.J. Xu, Recent progress in carbon quantum dots:Synthesis, properties and applications in photocatalysis, J. Mater. Chem. A 5 (8) (2017) 3717-3734. https://doi.org/10.1039/c6ta08660h [10] Y.G. Ko, U.S. Choi, J.S. Kim, Y.S. Park, Novel synthesis and characterization of activated carbon fiber and dye adsorption modeling, Carbon 40 (14) (2002) 2661-2672. http://dx.doi.org/10.1016/S0008-6223(02)00168-9 [11] M. Terrones, A.R. Botello-Méndez, J. Campos-Delgado, F. López-Urías, Y.I. Vega-Cantú, F.J. Rodríguez-Macías, A.L. Elías, E. Muñoz-Sandoval, A.G. Cano-Márquez, J.C. Charlier, H. Terrones, Graphene and graphite nanoribbons:Morphology, properties, synthesis, defects and applications, Nano Today 5 (4) (2010) 351-372. http://dx.doi.org/10.1016/j.nantod.2010.06.010 [12] C.D. Liang, Z.J. Li, S. Dai, Mesoporous carbon materials:Synthesis and modification, Angew Chem Int Ed Engl 47 (20) (2008) 3696-3717. https://www.ncbi.nlm.nih.gov/pubmed/18350530/ [13] F. Wudl, Fullerene materials, J. Mater. Chem. 12 (7) (2002) 1959-1963. https://doi.org/10.1039/b201196d [14] Y. Li, J. Qi, J. Li, J. Shen, Y. Liu, X. Sun, J. Shen, W. Han, L. Wang, Nitrogen-doped hollow mesoporous carbon spheres for efficient water desalination by capacitive deionization, ACS Sustain. Chem. Eng. 5 (2017) 6635-6644 [15] J. Liu, N.P. Wickramaratne, S.Z. Qiao, M. Jaroniec, Molecular-based design and emerging applications of nanoporous carbon spheres, Nat Mater 14 (8) (2015) 763-774. https://www.ncbi.nlm.nih.gov/pubmed/26201892/ [16] L.M. Guo, X.Z. Cui, Y.S. Li, Q.J. He, L.X. Zhang, W.B. Bu, J.L. Shi, Hollow mesoporous carbon spheres with magnetic cores and their performance as separable bilirubin adsorbents, Chem Asian J 4 (9) (2009) 1480-1485. https://www.ncbi.nlm.nih.gov/pubmed/19582733/ [17] L.M. Guo, L.X. Zhang, J.M. Zhang, J. Zhou, Q.J. He, S.Z. Zeng, X.Z. Cui, J.L. Shi, Hollow mesoporous carbon spheres:An excellent bilirubin adsorbent, Chem Commun (Camb) (40) (2009) 6071-6073. https://www.ncbi.nlm.nih.gov/pubmed/19809647/ [18] F.P. Hu, Z.Y. Wang, Y.L. Li, C.M. Li, X. Zhang, P.K. Shen, Improved performance of Pd electrocatalyst supported on ultrahigh surface area hollow carbon spheres for direct alcohol fuel cells, J. Power Sources 177 (1) (2008) 61-66. http://dx.doi.org/10.1016/j.jpowsour.2007.11.024 [19] S.B. Yang, X.L. Feng, L.J. Zhi, Q. Cao, J. Maier, K. Müllen, Nanographene-constructed hollow carbon spheres and their favorable electroactivity with respect to lithium storage, Adv Mater 22 (7) (2010) 838-842. https://www.ncbi.nlm.nih.gov/pubmed/20217794/ [20] J.P. Han, G.Y. Xu, B. Ding, J. Pan, H. Dou, D.R. MacFarlane, Porous nitrogen-doped hollow carbon spheres derived from polyaniline for high performance supercapacitors, J. Mater. Chem. A 2 (15) (2014) 5352-5357. https://doi.org/10.1039/c3ta15271e [21] X.H. Liu, L. Zhou, Y.Q. Zhao, L. Bian, X.T. Feng, Q.S. Pu, Hollow, spherical nitrogen-rich porous carbon shells obtained from a porous organic framework for the supercapacitor, ACS Appl Mater Interfaces 5 (20) (2013) 10280-10287. https://www.ncbi.nlm.nih.gov/pubmed/24053493/ [22] S.L. Buchwald, Cross coupling, Acc Chem Res 41 (11) (2008) 1439. https://www.ncbi.nlm.nih.gov/pubmed/19032082/ [23] L.X. Yin, J. Liebscher, Carbon-carbon coupling reactions catalyzed by heterogeneous palladium catalysts, Chem Rev 107 (1) (2007) 133-173. https://www.ncbi.nlm.nih.gov/pubmed/17212474/ [24] R.F. Heck, Palladium-catalyzed reactions of organic halides with olefins, Accounts of Chem. Res. 12 (1979) 146-151 [25] N. Miyaura, A. Suzuki, Palladium-catalyzed cross-coupling reactions of organoboron compounds, Chem. Rev. 95 (7) (1995) 2457-2483. https://doi.org/10.1021/cr00039a007 [26] I.P. Beletskaya, A.V. Cheprakov, The heck reaction as a sharpening stone of palladium catalysis, Chem. Rev. 100 (8) (2000) 3009-3066. https://doi.org/10.1021/cr9903048 [27] C.J. Welch, J. Albaneze-Walker, W.R. Leonard, M. Biba, J. DaSilva, D. Henderson, B. Laing, D.J. Mathre, S. Spencer, X.D. Bu, T.B. Wang, Adsorbent screening for metal impurity removal in pharmaceutical process research, Org. Process. Res. Dev. 9 (2) (2005) 198-205. http://dx.doi.org/10.1021/op049764f [28] C. Garrett, K. Prasad, The art of meeting palladium specifications in active pharmaceutical ingredients produced by Pd-catalyzed reactions, Adv. Synth. Catal. 346 (8) (2004) 889-900. https://doi.org/10.1002/adsc.200404071 [29] R. Narayanan, M.A. El-Sayed, Effect of catalysis on the stability of metallic nanoparticles:Suzuki reaction catalyzed by PVP-palladium nanoparticles, J. Am. Chem. Soc. 125 (27) (2003) 8340-8347. https://doi.org/10.1021/ja035044x [30] R. Narayanan, M.A. El-Sayed, Effect of colloidal catalysis on the nanoparticle size distribution:Dendrimer-Pd vs PVP-Pd nanoparticles catalyzing the suzuki coupling reaction, J. Phys. Chem. B 108 (25) (2004) 8572-8580. https://doi.org/10.1021/jp037169u [31] C.S. Duanmu, I. Saha, Y. Zheng, B.M. Goodson, Y. Gao, Dendron-functionalized superparamagnetic nanoparticles with switchable solubility in organic and aqueous media:Matrices for homogeneous catalysis and potential MRI contrast agents, Chem. Mater. 18 (25) (2006) 5973-5981. http://dx.doi.org/10.1021/cm061782j [32] R. Narayanan, C. Tabor, M.A. El-Sayed, Can the observed changes in the size or shape of a colloidal nanocatalyst reveal the nanocatalysis mechanism type:Homogeneous or heterogeneous?Top. Catal. 48 (1-4) (2008) 60-74. http://dx.doi.org/10.1007/s11244-008-9057-4 [33] P.J. Ellis, I.J. Fairlamb, S.F. Hackett, K. Wilson, A.F. Lee, Evidence for the surface-catalyzed Suzuki-Miyaura reaction over palladium nanoparticles:An operando XAS study, Angew Chem Int Ed Engl 49 (10) (2010) 1820-1824. https://www.ncbi.nlm.nih.gov/pubmed/20127926/ [34] B.M. Bhanage, M. Arai, Catalyst product separation techniques in heck reaction, Catal. Rev. 43 (3) (2001) 315-344. http://dx.doi.org/10.1081/CR-100107480 [35] L. Djakovitch, K. Koehler, Heck reaction catalyzed by Pd-modified zeolites, J. Am. Chem. Soc. 123 (25) (2001) 5990-5999. https://doi.org/10.1021/ja001087r [36] L. Djakovitch, K. Koehler, Heterogeneously catalysed Heck reaction using palladium modified zeolites, J. Mol. Catal. A:Chem. 142 (2) (1999) 275-284. http://dx.doi.org/10.1016/S1381-1169(98)00292-1 [37] M.K. Bhunia, S.K. Das, P. Pachfule, R. Banerjee, A. Bhaumik, Nitrogen-rich porous covalent imine network (CIN) material as an efficient catalytic support for C-C coupling reactions, Dalton Trans. 41 (4) (2012) 1304-1311. https://doi.org/10.1039/c1dt11350j [38] C.A. Wang, Y.F. Han, Y.W. Li, K. Nie, X.L. Cheng, J.P. Zhang, Bipyridyl palladium embedded porous organic polymer as highly efficient and reusable heterogeneous catalyst for Suzuki-Miyaura coupling reaction, RSC Adv. 6 (41) (2016) 34866-34871. https://doi.org/10.1039/c6ra03331h [39] S.Y. Ding, J. Gao, Q. Wang, Y. Zhang, W.G. Song, C.Y. Su, W. Wang, Construction of covalent organic framework for catalysis:Pd/COF-LZU1 in suzuki-miyaura coupling reaction, J. Am. Chem. Soc. 133 (49) (2011) 19816-19822. https://doi.org/10.1021/ja206846p [40] S.K. Mohamed, M. Abuelhamd, N.K. Allam, A. Shahat, M. Ramadan, H.M.A. Hassan, Eco-friendly facile synthesis of glucose-derived microporous carbon spheres electrodes with enhanced performance for water capacitive deionization, Desalination 477 (2020) 114278. http://dx.doi.org/10.1016/j.desal.2019.114278 [41] Sun X, Li Y, Colloidal carbon spheres and their core/shell structures with noble-metal nanoparticles, Angew Chem Int Ed Engl 43 (5) (2004) 597-601. https://www.ncbi.nlm.nih.gov/pubmed/14743414/ [42] M. Sevilla, A. Fuertes, Chemical and structural properties of carbonaceous products obtained by hydrothermal carbonization of saccharides, Chem. Eur. J. 15 (16) (2009) 4195-4203. https://doi.org/10.1002/chem.200802097 [43] M. Li, W. Li, S.X. Liu, Hydrothermal synthesis, characterization, and KOH activation of carbon spheres from glucose, Carbohydr Res 346 (8) (2011) 999-1004. https://www.ncbi.nlm.nih.gov/pubmed/21481847/ [44] D. Graf, F. Molitor, K. Ensslin, C. Stampfer, A. Jungen, C. Hierold, L. Wirtz, Spatially resolved Raman spectroscopy of single- and few-layer graphene, Nano Lett 7 (2) (2007) 238-242. https://www.ncbi.nlm.nih.gov/pubmed/17297984/ [45] S. Kotha, K. Lahiri, D. Kashinath, Recent applications of the Suzuki-Miyaura cross-coupling reaction in organic synthesis, Tetrahedron 58 (48) (2002) 9633-9695. http://dx.doi.org/10.1016/S0040-4020(02)01188-2 [46] A. Schätz, T.R. Long, R.N. Grass, W.J. Stark, P.R. Hanson, O. Reiser, Immobilization on a nanomagnetic Co/C surface using ROM polymerization:Generation of a hybrid material as support for a recyclable palladium catalyst, Adv. Funct. Mater. 20 (24) (2010) 4323-4328. https://doi.org/10.1002/adfm.201000959 [47] Y. Jang, J. Chung, S. Kim, S.W. Jun, B.H. Kim, D.W. Lee, B.M. Kim, T. Hyeon, Simple synthesis of Pd-Fe3O4 heterodimer nanocrystals and their application as a magnetically recyclable catalyst for Suzuki cross-coupling reactions, Phys Chem Chem Phys 13 (7) (2011) 2512-2516. https://www.ncbi.nlm.nih.gov/pubmed/21203638/ [48] S. Moussa, A.R. Siamaki, B.F. Gupton, M.S. El-Shall, Pd-partially reduced graphene oxide catalysts (Pd/PRGO):Laser synthesis of Pd nanoparticles supported on PRGO nanosheets for carbon-carbon cross coupling reactions, ACS Catal. 2 (1) (2012) 145-154. https://doi.org/10.1021/cs200497e [49] J. Zhi, D.P. Song, Z.W. Li, X. Lei, A.G. Hu, Palladium nanoparticles in carbon thin film-lined SBA-15 nanoreactors:Efficient heterogeneous catalysts for Suzuki-Miyaura cross coupling reaction in aqueous media, Chem. Commun. Camb. Engl. 47 (38) (2011) 10707-10709. https://www.ncbi.nlm.nih.gov/pubmed/21892464/ [50] R. Li, P. Zhang, Y.M. Huang, P. Zhang, H. Zhong, Q.W. Chen, Pd-Fe3O4@C hybrid nanoparticles:Preparation, characterization, and their high catalytic activity toward Suzuki coupling reactions, J. Mater. Chem. 22 (42) (2012) 22750. https://doi.org/10.1039/c2jm35252d [51] M. Cargnello, N.L. Wieder, P. Canton, T. Montini, G. Giambastiani, A. Benedetti, R.J. Gorte, P. Fornasiero, A versatile approach to the synthesis of functionalized thiol-protected palladium nanoparticles, Chem. Mater. 23 (17) (2011) 3961-3969. https://doi.org/10.1021/cm2014658 [52] C.X. Yang, A.K. Manocchi, B. Lee, H. Yi, Viral-templated palladium nanocatalysts for Suzuki coupling reaction, J. Mater. Chem. 21 (1) (2011) 187-194. https://doi.org/10.1039/c0jm03145c [53] A. Modak, J. Mondal, M. Sasidharan, A. Bhaumik, Triazine functionalized ordered mesoporous polymer:A novel solid support for Pd-mediated C-C cross-coupling reactions in water, Green Chem. 13 (5) (2011) 1317. https://doi.org/10.1039/c1gc15045f |
[1] | Fei Li, Xuemei Wang, Pengze Zhang, Qinqin Wang, Mingyuan Zhu, Bin Dai. Nitrogen and phosphorus co-doped activated carbon induces high density Cu+ active center for acetylene hydrochlorination [J]. Chinese Journal of Chemical Engineering, 2023, 59(7): 193-199. |
[2] | Kechang Gao, Shengjuan Shao, Zhixing Li, Jiaxin Jing, Weizhou Jiao, Youzhi Liu. Kinetics of the direct reaction between ozone and phenol by high-gravity intensified heterogeneous catalytic ozonation [J]. Chinese Journal of Chemical Engineering, 2023, 53(1): 317-323. |
[3] | Weizhou Jiao, Xingyue Wei, Shengjuan Shao, Youzhi Liu. Catalytic decomposition and mass transfer of aqueous ozone promoted by Fe-Mn-Cu/γ-Al2O3 in a rotating packed bed [J]. Chinese Journal of Chemical Engineering, 2022, 45(5): 133-142. |
[4] | Zhen Lu, Jie He, Bogeng Guo, Yulai Zhao, Jingyu Cai, Longqiang Xiao, Linxi Hou. Efficient homogenous catalysis of CO2 to generate cyclic carbonates by heterogenous and recyclable polypyrazoles [J]. Chinese Journal of Chemical Engineering, 2022, 43(3): 110-115. |
[5] | Guoxiao Cai, Wei Xiong, Susu Zhou, Pingle Liu, Yang Lv, Fang Hao, Hean Luo, ChangYi Kong. A multi-functional Ru Mo bimetallic catalyst for ultra-efficient C3 alcohols production from liquid phase hydrogenolysis of glycerol [J]. Chinese Journal of Chemical Engineering, 2022, 51(11): 199-215. |
[6] | Wei-Qi Yan, Yi-An Zhu, Xing-Gui Zhou, Wei-Kang Yuan. Rational design of heterogeneous catalysts by breaking and rebuilding scaling relations [J]. Chinese Journal of Chemical Engineering, 2022, 41(1): 22-28. |
[7] | Zhibin Deng, Xing Ge, Wenting Zhang, Shizhong Luo, Jun Shen, Fangli Jing, Wei Chu. Oxidative dehydrogenation of ethane with carbon dioxide over silica molecular sieves supported chromium oxides: Pore size effect [J]. Chinese Journal of Chemical Engineering, 2021, 34(6): 77-86. |
[8] | Huanhao Chen, Yibing Mu, Shanshan Xu, Shaojun Xu, Christopher Hardacre, Xiaolei Fan. Recent advances in non-thermal plasma (NTP) catalysis towards C1 chemistry [J]. Chinese Journal of Chemical Engineering, 2020, 28(8): 2010-2021. |
[9] | Yi Xiong, Liping Huang, Sakil Mahmud, Feng Yang, Huihong Liu. Bio-synthesized palladium nanoparticles using alginate for catalytic degradation of azo-dyes [J]. Chinese Journal of Chemical Engineering, 2020, 28(5): 1334-1343. |
[10] | Fushan Chen, Songlin Zhao, Tao Yang, Taotao Jiang, Jun Ni, Houfeng Xiong, Qunfeng Zhang, Xiaonian Li. Controllable synthesis of novel nanoporous manganese oxide catalysts for the direct synthesis of imines from alcohols and amines [J]. Chinese Journal of Chemical Engineering, 2019, 27(10): 2438-2446. |
[11] | JIANG Hong, MENG Lie, CHEN Rizhi, JIN Wanqin, XING Weihong, XU Nanping. Progress on Porous Ceramic Membrane Reactors for Heterogeneous Catalysis over Ultrafine and Nano-sized Catalysts [J]. Chin.J.Chem.Eng., 2013, 21(2): 205-215. |
[12] | SHU Qing, GAO Jixian, LIAO Yuhui, WANG Jinfu. Reaction Kinetics of Biodiesel Synthesis from Waste Oil Using a Carbon-based Solid Acid Catalyst [J]. , 2011, 19(1): 163-168. |
[13] | CHEN Songying , PENG Shaoyi, YANG Zhangping. TWO-STEP MECHANISM IN HETEROGENEOUS CATALYSIS AND DYNAMIC ANALYSIS [J]. , 1992, 7(1): 103-107. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||