[1] H.Q. Hu, S. Rangou, M. Kim, P. Gopalan, V. Filiz, A. Avgeropoulos, C.O. Osuji, Continuous equilibrated growth of ordered block copolymer thin films by electrospray deposition, ACS Nano 7 (4) (2013) 2960–2970 [2] K. Sarojini Kg, P. Dhar, S. Varughese, S.K. Das, Coalescence dynamics of PEDOT: PSS droplets impacting at offset on substrates for inkjet printing, Langmuir 32 (23) (2016) 5838–5851 [3] M.Y. Teo, S. Kee, N. RaviChandran, L. Stuart, K.C. Aw, J. Stringer, Enabling free-standing 3D hydrogel microstructures with microreactive inkjet printing, ACS Appl. Mater. Interfaces 12 (1) (2020) 1832–1839 [4] Y.F. He, R. Foralosso, G.F. Trindade, A. Ilchev, L. Ruiz-Cantu, E.A. Clark, S. Khaled, R.J.M. Hague, C.J. Tuck, F.R.A.J. Rose, G. Mantovani, D.J. Irvine, C.J. Roberts, R.D. Wildman, A reactive prodrug ink formulation strategy for inkjet 3D printing of controlled release dosage forms and implants, Adv. Therap. 3 (6) (2020) 1900187 [5] Z.P. Jin, H. Mei, L.K. Pan, H.X. Liu, L.F. Cheng, Superhydrophobic self-cleaning hierarchical micro-/nanocomposite coating with high corrosion resistance and durability, ACS Sustain. Chem. Eng. 9 (11) (2021) 4111–4121 [6] D.Y.C. Chan, E. Klaseboer, R. Manica, Film drainage and coalescence between deformable drops and bubbles, Soft Matter 7 (6) (2011) 2235–2264 [7] D.G.A.L. Aarts, H.N.W. Lekkerkerker, Droplet coalescence: Drainage, film rupture and neck growth in ultralow interfacial tension systems, J. Fluid Mech. 606 (2008) 275–294 [8] J.D. Paulsen, J.C. Burton, S.R. Nagel, Viscous to inertial crossover in liquid drop coalescence, Phys. Rev. Lett. 106 (11) (2011) 114501 [9] S. Perumanath, M.K. Borg, M.V. Chubynsky, J.E. Sprittles, J.M. Reese, Droplet coalescence is initiated by thermal motion, Phys. Rev. Lett. 122 (10) (2019) 104501 [10] H. Fujimoto, T. Ogino, H. Takuda, N. Hatta, Collision of a droplet with a hemispherical static droplet on a solid, Int. J. Multiph. Flow 27 (7) (2001) 1227–1245 [11] J. Wakefield, C.F. Tilger, M.A. Oehlschlaeger, The interaction of falling and sessile drops on a hydrophobic surface, Exp. Therm. Fluid Sci. 79 (2016) 36–43 [12] M. Kumar, R. Bhardwaj, K.C. Sahu, Coalescence dynamics of a droplet on a sessile droplet, Phys. Fluids 32 (1) (2020) 012104 [13] J.R. Castrejón-Pita, K.J. Kubiak, A.A. Castrejón-Pita, M.C. Wilson, I.M. Hutchings, Mixing and internal dynamics of droplets impacting and coalescing on a solid surface, Phys. Rev. E 88 (2) (2013) 023023 [14] P.J. Graham, M.M. Farhangi, A. Dolatabadi, Dynamics of droplet coalescence in response to increasing hydrophobicity, Phys. Fluids 24 (11) (2012) 112105 [15] D. Soltman, V. Subramanian, Inkjet-printed line morphologies and temperature control of the coffee ring effect, Langmuir 24 (5) (2008) 2224–2231 [16] J. Stringer, B. Derby, Formation and stability of lines produced by inkjet printing, Langmuir 26 (12) (2010) 10365–10372 [17] P.C. Duineveld, The stability of ink-jet printed lines of liquid with zero receding contact angle on a homogeneous substrate, J. Fluid Mech. 477 (2003) 175-200 [18] X.D. Cheng, Y.L. Zhu, L. Zhang, D.Y. Zhang, T. Ku, Lattice Boltzmann simulation of droplets coalescence in a film patterning process on nonideal surfaces, Comput. Fluids 176 (2018) 68–78 [19] M.W. Lee, N.Y. Kim, S. Chandra, S.S. Yoon, Coalescence of sessile droplets of varying viscosities for line printing, Int. J. Multiph. Flow 56 (2013) 138–148 [20] R. Li, N. Ashgriz, S. Chandra, J.R. Andrews, S. Drappel, Coalescence of two droplets impacting a solid surface, Exp. Fluids 48 (6) (2010) 1025–1035 [21] Y.H. Fu, H. Wang, X. Zhang, L. Bai, Y. Jin, Y. Cheng, Numerical simulation of liquid mixing inside soft droplets with periodic deformation by a lattice Boltzmann method, J. Taiwan Inst. Chem. Eng. 98 (2019) 37–44 [22] M.Z. Guo, X.J. Hu, F. Yang, S. Jiao, Y.J. Wang, H.Y. Zhao, G.S. Luo, H.M. Yu, Mixing performance and application of a three-dimensional serpentine microchannel reactor with a periodic vortex-inducing structure, Ind. Eng. Chem. Res. 58 (29) (2019) 13357–13365 [23] E. Ghazimirsaeed, M. Madadelahi, M. Dizani, A. Shamloo, Secondary flows, mixing, and chemical reaction analysis of droplet-based flow inside serpentine microchannels with different cross sections, Langmuir 37 (17) (2021) 5118–5130 [24] Y.H. Lai, M.H. Hsu, J.T. Yang, Enhanced mixing of droplets during coalescence on a surface with a wettability gradient, Lab Chip 10 (22) (2010) 3149–3156 [25] S.I. Yeh, H.J. Sheen, J.T. Yang, Chemical reaction and mixing inside a coalesced droplet after a head-on collision, Microfluid. Nanofluid. 18 (5–6) (2015) 1355–1363 [26] S.I. Yeh, W.F. Fang, H.J. Sheen, J.T. Yang, Droplets coalescence and mixing with identical and distinct surface tension on a wettability gradient surface, Microfluid. Nanofluid. 14 (5) (2013) 785–795 [27] T.C. Sykes, D. Harbottle, Z. Khatir, H.M. Thompson, M.C.T. Wilson, Substrate wettability influences internal jet formation and mixing during droplet coalescence, Langmuir 36 (32) (2020) 9596–9607 [28] G. Chen, B. Ji, Y.B. Gao, C. Wang, J.B. Wu, B.P. Zhou, W.J. Wen, Towards the rapid and efficient mixing on ‘open-surface’ droplet-based microfluidics via magnetic actuation, SensorActuat. B: Chem. 286 (2019) 181–190 [29] S. Bansal, P. Sen, Mixing enhancement by degenerate modes in electrically actuated sessile droplets, SensorActuat. B: Chem. 232 (2016) 318–326 [30] K.Y. Lee, S. Park, Y.R. Lee, S.K. Chung, Magnetic droplet microfluidic system incorporated with acoustic excitation for mixing enhancement, SensorActuat. A: Phys. 243 (2016) 59–65 [31] A. Davanlou, R. Kumar, Passive mixing enhancement of microliter droplets in a thermocapillary environment, Microfluid. Nanofluid. 19 (6) (2015) 1507–1513 [32] H. Kinoshita, S. Kaneda, T. Fujii, M. Oshima, Three-dimensional measurement and visualization of internal flow of a moving droplet using confocal micro-PIV, Lab Chip 7 (3) (2007) 338–346 [33] S.F. Zhao, W.T. Wang, M.X. Zhang, T. Shao, Y. Jin, Y. Cheng, Three-dimensional simulation of mixing performance inside droplets in micro-channels by Lattice Boltzmann method, Chem. Eng. J. 207-208 (2012) 267–277 [34] C.Y. Pak, W.T. Li, Y.L. Steve Tse, Free energy and dynamics of water droplet coalescence, J. Phys. Chem. C122 (2018) 22975-22984 [35] Q. Chen, C. Wang, X.D. Zhang, G.J. Chen, Q.Y. Hu, H.J. Li, J.Q. Wang, D. Wen, Y.Q. Zhang, Y.F. Lu, G. Yang, C. Jiang, J. Wang, G. Dotti, Z. Gu, In situ sprayed bioresponsive immunotherapeutic gel for post-surgical cancer treatment, Nat. Nanotechnol. 14 (1) (2019) 89–97 [36] S. Plimpton, Fast parallel algorithms for short-range molecular dynamics, J. Comput. Phys. 117 (1) (1995) 1–19 [37] P.J. Hoogerbrugge, J.M.V.A. Koelman, Simulating microscopic hydrodynamic phenomena with dissipative particle dynamics, Europhys. Lett. 19 (3) (1992) 155–160 [38] P.B. Warren, Vapor–liquid coexistence in many-body dissipative particle dynamics, Phys. Rev. E 68 (6) (2003) 066702 [39] P. Español, P.B. Warren, Perspective: Dissipative particle dynamics, J. Chem. Phys. 146 (15) (2017) 150901 [40] Y.D. Xia, J. Goral, H. Huang, I. Miskovic, P. Meakin, M. Deo, Many-body dissipative particle dynamics modeling of fluid flow in fine-grained nanoporous shales, Phys. Fluids 29 (5) (2017) 056601 [41] K. Zhang, Z. Li, M. Maxey, S. Chen, G.E. Karniadakis, Self-cleaning of hydrophobic rough surfaces by coalescence-induced wetting transition, Langmuir 35 (6) (2019) 2431–2442 [42] C.J. Wu, K.C. Chu, Y.J. Sheng, H.K. Tsao, Sliding dynamic behavior of a nanobubble on a surface, J. Phys. Chem. C 121 (33) (2017) 17932–17940 [43] P. Español, P. Warren, Statistical mechanics of dissipative particle dynamics, Europhys. Lett. 30(4) (1995)191-196 [44] M. Arienti, W. Pan, X. Li, G. Karniadakis, Many-body dissipative particle dynamics simulation of liquid/vapor and liquid/solid interactions, J. Chem. Phys. 134 (20) (2011) 204114 [45] G.N. Yi, Z.Q. Cai, Z.M. Gao, Z.C. Jiang, X.B. Huang, J.J. Derksen, Droplet impingement and wetting behavior on a chemically heterogeneous surface in the Beyond–Cassie–Baxter regime, AIChE J. 66 (8) (2020) e16263 [46] U.O.M. Vázquez, W. Shinoda, P.B. Moore, C.C. Chiu, S.O. Nielsen, Calculating the surface tension between a flat solid and a liquid: A theoretical and computer simulation study of three topologically different methods, J. Math. Chem. 45 (1) (2009) 161–174 [47] M. Ahmadlouydarab, A.A. Hemeda, Y.B. Ma, Six stages of microdroplet detachment from microscale fibers, Langmuir 34 (1) (2018) 198–204 [48] X.W. Tong, J.L. Dong, Y.D. Shang, K. Inthavong, J.Y. Tu, Effects of nasal drug delivery device and its orientation on sprayed particle deposition in a realistic human nasal cavity, Comput. Biol. Med. 77 (2016) 40–48 [49] M.M. Farhangi, P.J. Graham, N.R. Choudhury, A. Dolatabadi, Induced detachment of coalescing droplets on superhydrophobic surfaces, Langmuir 28 (2) (2012) 1290–1303 [50] R. Essajai, A. Mzerd, N. Hassanain, M. Qjani, Thermal conductivity enhancement of nanofluids composed of rod-shaped gold nanoparticles: Insights from molecular dynamics, J. Mol. Liq. 293 (2019) 111494 |