Chin.J.Chem.Eng. ›› 2015, Vol. 23 ›› Issue (7): 1065-1076.DOI: 10.1016/j.cjche.2014.10.022
• REVIEWS • Next Articles
Gabriel Ascanio
Received:
2013-12-13
Revised:
2014-10-28
Online:
2015-08-21
Published:
2015-07-28
Contact:
Gabriel Ascanio
Supported by:
Supported by DGAPA-UNAM through the grant IN-108312.
Gabriel Ascanio
通讯作者:
Gabriel Ascanio
Gabriel Ascanio. Mixing time in stirred vessels: A review of experimental techniques[J]. Chin.J.Chem.Eng., 2015, 23(7): 1065-1076.
Gabriel Ascanio. Mixing time in stirred vessels: A review of experimental techniques[J]. Chinese Journal of Chemical Engineering, 2015, 23(7): 1065-1076.
Add to citation manager EndNote|Ris|BibTeX
URL: https://cjche.cip.com.cn/EN/10.1016/j.cjche.2014.10.022
[1] N. Harnby, M.F. Edwards, A.W. Nienow, Mixing in the Process Industries, Butterworth-Heinemann, Oxford, UK, 1997.[2] G.K. Patterson, E.L. Paul, S.M. Kresta, A.W. Etchells III,Mixing and chemical reactions, in: E.M. Paul, S.M. Kresta, V.A. Atiemo-Obeng (Eds.), Handbook of IndustrialMixing: Science and Practice, JohnWiley & Sons, New Jersey, 2004.[3] G.B. Tatterson, Fluid Mixing and Gas Dispersion in Agitated Tanks, McGraw-Hill, USA, 1991.[4] M.Moo-Young, K. Tichar, F.A.L. Dullien, The blending efficiencies of some impellers in batch mixing, AIChE J. 18 (1972) 178-182.[5] A.B. Metzner, R.E. Otto, Agitation of non-Newtonian fluids, AIChE J. 3 (1957) 3-10.[6] S. Nagata, Mixing: Principles and Applications, Wiley, New York, 1975.[7] M. Nishikawa, K. Ashiwake, N. Hashimoto, S. Nagata, Agitation power and mixing time in off-centering mixing, Int. Chem. Eng. 19 (1979) 153-159.[8] N.K. Nere, A.W. Patwardhan, J.B. Joshi, Liquid-phase mixing in stirred vessels: turbulent flow regime, Ind. Eng. Chem. Res. 42 (2003) 2661-2698.[9] Y. Sano, H. Usui, Effects of paddle dimensions and baffle conditions on the interrelations among discharge flow rate, mixing power and mixing time in mixing vessels, J. Chem. Eng. Jpn. 20 (1987) 399-404.[10] R.K. Grenville, A.W. Nienow, Blending of miscible liquids, in: E.M. Paul, S.M. Kresta, V.A. Atiemo-Obeng (Eds.), Handbook of IndustrialMixing: Science and Practice, 1st ed.John Wiley, New Jersey, 2004.[11] J. Szoplik, J. Karcz, An efficiency of the liquid homogenization in agitated vessels equipped with off-centred impellers, Chem. Pap. 59 (2005) 373-379.[12] P. Mavros, Flow visualization in stirred vessels. A review of experimental techniques, Chem. Eng. Res. Des. 79 (2001) 113-127.[13] C.J. Hoogendoorn, A.P. den Hartog, Model studies on mixers in the viscous flow region, Chem. Eng. Sci. 22 (1967) 1689-1699.[14] P.J. Carreau, I. Patterson, C.Y. Yap, Mixing of viscoelastic fluids with helical-ribbon agitators. I — mixing time and flow patterns, Can. J. Chem. Eng. 54 (1976) 135-142.[15] M. Kraume, P. Zehner, Experience with experimental standards for measurements of various parameters in stirred tanks: a comparative test, Chem. Eng. Res. Des. 79 (2001) 811-818.[16] D.J. Lamberto, F.J. Muzzio, P.D. Swanson, A.L. Tonkovich, Using time-dependent RPM to enhance mixing in stirred vessels, Chem. Eng. Sci. 51 (1996) 733-741.[17] W.G. Yao, H. Sato, K. Takahashi, K. Koyama, Mixing performance experiments in impeller stirred tanks subjected to unsteady rotational speeds, Chem. Eng. Sci. 53 (1998) 3031-3040.[18] G. Ascanio, M. Brito-Bazán, E. Brito-de la Fuente, P.J. Carreau, P.A. Tanguy, Unconventional configuration studies to improve mixing times in stirred tanks, Can. J. Chem. Eng. 80 (2002) 558-565.[19] M. Alvarez, P.E. Arratia, F.J. Muzzio, Laminar mixing in eccentric stirred tank systems, Can. J. Chem. Eng. 80 (2002) 546-557.[20] G. Ascanio, S. Foucault, P.A. Tanguy, Time-periodic mixing of shear-thinning fluids, Chem. Eng. Res. Des. 82 (2004) 1199-1203.[21] A. Hidalgo-Millán, Geometric perturbations in mechanically agitated tanks(Ph.D. dissertation) National Autonomous University of Mexico, 2010. (in Spanish).[22] K.W. Norwood, A.B. Metzner, Flow patterns and mixing rates in agitated vessels, AIChE J 6 (1960) 432-437.[23] D. Hari-Prajitno, V.P. Mishra, K. Takenaka, W. Bujalski, A.W. Nienow, J. Mckemmie, Gas-liquid mixing studies with multiple up-and down-pumping hydrofoil impellers: power characteristics and mixing time, Can. J. Chem. Eng. 76 (1998) 1056-1068.[24] A.B. Pandit, C.D. Rielly, K. Niranjan, J.F. Davidson, The convex bladed mixed flow impeller and the marine propeller: A multipurpose agitator, Chem. Eng. Sci. 44 (1989) 2463-2474.[25] S.-J. Wang, J.-J. Zhong, A novel centrifugal impeller bioreactor. I. Fluid circulation, mixing, and liquid velocity profiles, Biotechnol. Bioeng. 51 (1996) 511-519.[26] T. Espinosa-Solares, E. Brito-de la Fuente, A. Tecante, L.Medina-Torres, P.A. Tanguy, Mixing time in rheologically evolving model fluids by hybrid dual mixing systems, Chem. Eng. Res. Des. 80 (2001) 817-823.[27] S. Foucault, G. Ascanio, P.A. Tanguy,Mixing times in coaxial mixerswith Newtonian and non-Newtonian fluids, Ind. Eng. Chem. Res. 45 (2006) 352-359.[28] Y.Hirata, R. Ito, Characteristics of flowandmixing in vesselwith rotatingmultistage disks, Ing, Proceedings of 6th European Conference on Mixing, Pavia, Italy, 1988.[29] O. Hiruta, K. Yamamura, H. Takebe, T. Futamura, K. Iinuma,H. Tanaka, Application of Maxblend fermentor® formicrobial processes, J. Ferment. Bioeng. 83 (1997) 79-86.[30] A. Iranshahi, C. Devals, M. Heniche, L. Fradette, P.A. Tanguy, K. Takenaka, Hydrodynamics characterization of the Maxblend impeller, Chem. Eng. Sci. 62 (2007) 3641-3653.[31] K. Takahashi, T. Yokota, T. Furukawa, K. Harada, Mixing of highly viscous Newtonian liquid in a helical ribbon agitated vessel at various liquid depths, J. Chem. Eng. Jpn 27 (1994) 244-247.[32] T. Takahashi, A. Tagawa,N. Atsumi, N. Dohi, Y. Kawase, Liquid-phase mixing time in boiling stirred tank reactors with large cross-section impellers, Chem. Eng. Process. 45 (2006) 303-311.[33] K. Takahashi, Y. Sugo, Y. Takahata, H. Sekine, M. Nakamura, Laminar mixing in stirred tank agitated by an impeller inclined, Int. J. Chem. Eng. 2012 (2012).http://dx.doi.org/10.1155/2012/858329 (10 pp., Article 858329).[34] E. Aizawa,N. Sakano,H. Imakoma,N. Ohmura, Effect of rheological property of fluids on mixing time in a stirred vessel, Kagaku Kogaku Ronbun 35 (2009) 539-542.[35] T. Kouda, H. Yano, F. Yoshinaga, M. Kaminoyama, M. Kamiwano, Characterization of non-Newtonian behavior during mixing of bacterial cellulose in a bioreactor, J. Ferment. Bioeng. 82 (1996) 382-386.[36] G. Delaplace, L. Bouvier, A. Moreau, R. Guérin, J.C. Leuliet, Determination of mixing time by colourimetric diagnosis — application to a new mixing system, Exp. Fluids 36 (2004) 437-443.[37] R.P. Chhabra, L. Bouvier, G. Delaplace, G. Cuvelier, S.Domenek, C. André,Determination of mixing timeswith helical ribbon impeller for non-Newtonian viscous fluids using an advanced imaging method, Chem. Eng. Technol. 30 (2007) 1686-1691.[38] O. Visuri, M. Laakkonen, J. Aittamaa, A digital imaging technique for the analysis of local inhomogeneities from agitated vessels, Chem. Eng. Technol. 30 (2007) 1692-1699.[39] F. Cabaret, S. Bonnot, L. Fradette, P.A. Tanguy,Mixing time analysis using colorimetric methods and image processing, Ind. Eng. Chem. Res. 46 (2007) 5032-5042.[40] L. Vega-Alvarado, B. Taboada, A. Hidalgo-Millán, G. Ascanio, Image analysismethod for the measurement of mixing times in stirred vessels, Chem. Eng. Technol. 34 (2011) 859-866.[41] ITS-Industrial Tomography Systems Plc, http://www.itoms.com (visited on February 2013).[42] H.S. Tapp, R.A. Williams, Status and applications of microelectrical resistance tomography, Chem. Eng. J. 77 (2000) 119-125.[43] P.J. Holden, M. Wang, R. Mann, F.J. Dickin, R.B. Edwards, Imaging stirred-vessel macromixing using electrical resistance tomography, AIChE J. 44 (1998) 780-790.[44] R. Mann, F.J. Dickin, M. Wang, T. Dyakowski, R.A. Williams, R.B. Edwards, A.E. Forrest, P.J. Holden, Application of electrical resistance tomography to interrogate mixing processes at plant scale, Chem. Eng. Sci. 52 (1997) 2087-2097.[45] R.Mann,M.Wang,A.E. Forrest, P.J.Holden, F.J. Dyakwski,Gas-liquid and miscible liquid mixing in a plant-scale vessel monitored using electrical resistance tomography, Chem. Eng. Commun. 175 (1999) 33-48.[46] P.J. Holden, M. Wang, R. Mann, F.J. Dickin, R.B. Edwards, On detecting mixing pathologies inside a stirred vessel using electrical resistance tomography, Chem. Eng. Res. Des. 77 (1999) 709-712.[47] P.A.T. Pinheiro, W.W. Loh, R.C. Waterfall, M. Wang, R. Mann, Three-dimensional electrical resistance tomography in a stirred vessel, Chem. Eng. Commun. 175 (1999) 25-38.[48] M. Wang, A. Dorward, D. Vlaev, R. Mann, Measurements of gas-liquid mixing in a stirred vessel using electrical resistance tomography (ERT), Chem. Eng. J. 77 (2000) 93-98.[49] S.J. Stanley, R. Mann, K. Primrose, Tomographic imaging of fluid mixing in three dimensions for single-feed semi-batch operation of a stirred vessel, Chem. Eng. Res. Des. 80 (2002) 903-909.[50] S.J. Stanley, R. Mann, K. Primrose, Interrogation of a precipitation reaction by electrical resistance tomography (ERT), AIChE J. 51 (2005) 607-614.[51] S.J. Stanley, Tomographic imaging during reactive precipitation in a stirred vessel: mixing with chemical reaction, Chem. Eng. Sci. 61 (2006) 7850-7863.[52] L. Pakzad, F. Ein-Mozaffari, P. Chan, Measuring mixing time in the agitation of non-Newtonian fluids through electrical resistance tomography, Chem. Eng. Technol. 31 (2008) 1838-1845.[53] T.L. Rodgers, L. Gangolf, C. Vannier, M. Parriaud,M. Cooke,Mixing times for process vessels with aspect ratios greater than one, Chem. Eng. Sci. 66 (2011) 2935-2944.[54] T.L. Rodgers, A.Kowalski, An electrical resistance tomographymethod for determining mixing in batch addition with a level change, Chem. Eng. Res. Des. 88 (2010) 204-212.[55] T.L. Rodgers, M. Cooke, F.R. Siperstein, A. Kowalski, Mixing and dissolution times for a Cowles disk agitator in large-scale emulsion preparation, Ind. Eng. Chem. Res. 48 (2009) 6859-6868.[56] T.L. Rodgers, F.R. Siperstein, R. Mann, T.A. York, A. Kowalski, Comparison of a networks-of-zones fluid mixing model for a baffled stirred vessel with threedimensional electrical resistance tomography, Meas. Sci. Technol. 22 (2011) (article 104014).[57] L. Pakzad, F. Ein-Mozaffari, S.R. Upreti, A. Lohi, Characterisation of the mixing of non-Newtonian fluids with a Scaba 6SRGT impeller through ERT and CFD, Can. J. Chem. Eng. 91 (2013) 90-100.[58] R. Mann, ERT imaging and linkage to CFD for stirred vessels in the chemical process industry, Proceedings of IEEE International Workshop Imaging Systems, IST 2009, Hong Kong, 2009.[59] M. Wang, A. Dorward, D. Vlaev, R. Mann, Measurements of gas-liquid mixing in a stirred vessel using electrical resistance tomography (ERT), Proceedings of the 1st World Congress Industrial Process Tomography, Buxton, Greater Manchester, 1999.[60] B. Abdullah, C. Dave, T.-H. Nguyen, C.G. Cooper, A.A. Adesina, Electrical resistance tomography-assisted analysis of dispersed phase hold-up in a gas-inducing mechanically stirred vessel, Chem. Eng. Sci. 66 (2011) 5648-5662.[61] Dantec Dynamics, Inc., http://www.dantecdynamics.com (visited on February 2014).[62] I. Edwards, S.A. Axon, M. Barigou, E.H. Stitt, Combined use of PEPT and ERT in the study of aluminum hydroxide precipitation, Ind. Eng. Chem. Res. 48 (2009) 1019-1028.[63] PEPT Cape Town, http://www.pept.uct.ac.za/ (visited on February 2013).[64] Y.S. Fangary, M. Barigou, J.P.K. Seville, D.J. Parker, Fluid trajectories in a stirred vessel of non-Newtonian liquid using positron emission particle tracking, Chem. Eng. Sci. 55 (2000) 5969-5979.[65] M. Barigou, F. Chiti, P. Pianko-Oprych, A. Guida, L. Adams, X. Fan, D.J. Parker, A.W. Nienow, Using positron emission particle tracking (PEPT) to study mixing in stirred vessels: Validation and tackling unsolved problems in opaque systems, J. Chem. Eng. Jpn. 42 (2009) 839-846.[66] W.M. Yek, M.N. Noui-Mehidi, R. Parthasarathy, S.N. Bhattacharya, J. Wu, N. Ohmura, N. Nishioka, Enhanced mixing of Newtonian fluids in a stirred vessel using impeller speed modulation, Can. J. Chem. Eng. 87 (2009) 839-846.[67] M.F.W. Distelhoff, A.J. Marquis, J.M. Nouri, J.H. Whitelaw, Scalar mixing measurements in batch operated stirred tanks, Can. J. Chem. Eng. 75 (1997) 641-652.[68] J.F. Hall, M. Barigou, M.J.H. Simmons, E.H. Stitt, Mixing in unbaffled highthroughput experimentation reactors, Ind. Eng. Chem. Res. 43 (2004) 4149-4158.[69] K.H.K. Chung, M. Barigou, M.J.H. Simmons, Reconstruction of 3-D flow field inside miniature stirred vessels using a 2-D PIV technique, Chem. Eng. Res. Des. 85 (2007) 560-567.[70] R. Zadghaffari, J.S. Moghaddas, J. Revstedt, A mixing study in a double-Rushton stirred tank, Comput. Chem. Eng. 33 (2009) 1240-1246.[71] M.L. Collignon, D. Dossin, A. Delafosse, M. Crine, D. Toye, Quality of mixing in a stirred bioreactor for animal cells culture: heterogeneities in a lab scale bioreactor and evolution of mixing time with scale up, Biotechnol. Agron. Environ. 14 (S2) (2010) 585-591.[72] A. Busciglio, F. Grisafi, F. Scargiali,A.Brucato,Mixingtime inunbaffled stirred tanks, Proceedings of 14th European Conference of Mixing, Warszawa, Poland, 2012.[73] P.E. Arratia, F.J. Muzzio, Planar laser-induced fluorescence method for analysis of mixing in laminar flows, Ind. Eng. Chem. Res. 43 (2004) 6557-6568.[74] Y. Hu, Z. Liu, J. Yang, Y. Jin, Y. Cheng, Study on the reactive mixing process in an unbaffled stirred tank using planar laser-induced fluorescence (pLIF) technique, Chem. Eng. Sci. 65 (2010) 4511-4518.[75] Y. Hu, W. Wang, T. Shao, J. Yang, Y. Cheng, Visualization of reactive and nonreactive mixing processes in a stirred tank using planar induced fluorescence (pLIF) technique, Chem. Eng. Res. Des. 90 (2012) 524-533.[76] I. Houcine, H. Vivier, E. Plasari, R. David, J. Villermaux, Planar laser induced fluorescence technique for measurements of concentration fields in continuous stirred tank reactors, Exp. Fluids 22 (1996) 95-102.[77] A. Fall, O. Lecoq, R. David, Characterization of mixing in a stirred tank by planar laser induced fluorescence (P.L.I.F.), Chem. Eng. Res. Des. 79 (2001) 876-882.[78] K.C. Lee,M. Yianneskis, J. Bertrand, J. Villermaux,Measurement of temperature and mixing time in stirred vessels with liquid crystal thermography, Proceedings of 9th European Conference on Mixing, Paris, France, 1997.[79] K.C. Lee, M. Yianneskis, A liquid crystal thermographic technique for themeasurement of mixing characteristics in stirred vessels, Chem. Eng. Res. Des. 75 (1997) 746-754.[80] D.A.R. Brown, P.N. Jones, J.C. Middleton, Experimental methods, part A: measuring tools and techniques for mixing and flow visualization studies, in: E.M. Paul, S.M. Kresta, V.A. Atiemo-Obeng (Eds.), Handbook of Industrial Mixing: Science and Practice, 1st ed.John Wiley & Sons, New Jersey, 2004.[81] D.B. Holmes, R.M. Voncken, J.A. Dekker, Fluid flow in turbine-stirred, baffled tanks—I. Circulation time, Chem. Eng. Sci. 19 (1964) 201-208.[82] I. Bouwmans, A. Barker, H.E.A. van Den Akker, Blending liquids of differing viscosities and densities in stirred vessels, Chem. Eng. Res. Des. 75 (1997) 777-783.[83] M. Giona, A. Paglianti, S. Cerbelli, S. Pintus, A. Adrover, Tracer dispersion in stirred tank reactors: asymptotic properties andmixing characterization, Can. J. Chem. Eng. 80 (2002) 580-590.[84] Y. Sano, H. Usui, Interrelations among mixing time, power number and discharge flow rate number baffled mixing vessels, J. Chem. Eng. Jpn. 18 (1985) 47-52.[85] M. Jahoda, V. Machon, Homogenization of liquids in tanks stirred by multiple impellers, Chem. Eng. Technol. 17 (1994) 95-101.[86] K. Rutherford, K.C. Lee, S.M.S. Mahmoudi, M. Yianneskis, Hydrodynamic characteristics of dual Rushton impeller stirred vessels, AIChE J. 42 (1996) 332-346.[87] J.-U. Becker, F. Oeters,Model experiments ofmixing in steel ladles with continuous addition of the substance to be mixed, Steel Res. Int. 69 (1998) 8-16.[88] P.R. Gogate, A.B. Pandit, Mixing of miscible liquids with density differences: effect of volume and density of the tracer fluid, Can. J. Chem. Eng. 77 (1999) 988-996.[89] N. Kamei, S. Hiraoka, Y. Kato, Y. Tada, K. Yamazaki, Effects of impeller and baffle conditions on mixing time in turbulent agitated vessels, Kagaku Kogaku Ronbun 28 (2002) 9-15.[90] M. Michelett, L. Nikiforaki, K.C. Lee, M. Yianneskis, Particle concentration and mixing characteristics of moderate-to-dense solid-liquid suspensions, Ind. Eng. Chem. Res. 42 (2003) 6236-6249.[91] G.R. Kasat, A.B. Pandit, Mixing time studies in multiple impeller agitated reactors, Can. J. Chem. Eng. 82 (2004) 892-904.[92] J. Mandal, S. Patil, M. Madan, D. Mazumdar, Mixing time and correlation for ladles stirred with dual porous plugs, Metall. Mater. Trans. B 36 (2005) 479-487.[93] F. Delvigne, J. Destain, P. Thonart, Structured mixing model for stirred bioreactors: an extension to the stochastic approach, Chem. Eng. J. 113 (2005) 1-12.[94] A.H.G. Cents, D.J.W. Jansen, D.W.F. Brilman, G.F. Versteeg, Influence of small amounts of additives on gas hold-up, bubble size, and interfacial area, Ind. Eng. Chem. Res. 44 (2005) 4863-4870.[95] T. Kumaresan, N.K. Nere, J.B. Joshi, Effect of internals on the flow pattern and mixing in stirred tanks, Ind. Eng. Chem. Res. 44 (2005) 9951-9961.[96] P. Hasal, M. Jahoda, I. Fo?t, Free liquid surface motions in a stirred tank: an insight into the fluid flow dynamics, Proceedings of CHISA 2006 — 17th International Congress Chemical and Process Engineering, Prague — Czech Republic, 2006.[97] V. Buwa, A. Dewan, A.F. Nassar, F. Durst, Fluid dynamics andmixing of single-phase flow in a stirred vessel with a grid disc impeller: experimental and numerical investigations, Chem. Eng. Sci. 61 (2006) 2815-2822.[98] Y. Bao, L. Chen, Z. Gao, J. Chen, Local void fraction and bubble size distributions in cold-gassed and hot-sparged stirred reactors, Chem. Eng. Sci. 65 (2010) 976-984.[99] N. Otomo, W. Bujalski, A.W. Nienow, K. Takahashi, A novel measurement technique for mixing time in an aerated stirred vessel, J. Chem. Eng. Jpn. 36 (2003) 66-74.[100] M. Martín, M. Rendueles, M. Díaz, Global and local mixing determinations for steel converter analysis, Chem. Eng. Sci. 60 (2005) 5781-5791.[101] P.N. Jones, G.N. Özcan-Ta?kin, Effects of physical property differences on blending, Chem. Eng. Technol. 28 (2005) 908-914.[102] A.B. Pandit, J.B. Joshi,Mixing in mechanically agitated gas-liquid contactors, bubble columns and modified bubble columns, Chem. Eng. Sci. 38 (1983) 1189-1215.[103] B.R. Poulsen, J.J.L. Iversen, Mixing determinations in reactor vessels using linear buffers, Chem. Eng. Sci. 52 (1997) 979-984.[104] J.R. Vallejos, Y. Kostov, M.R. Marten, G. Rao, Confocal optical system: a novel noninvasive sensor to study mixing, Biotechnol. Prog. 21 (2005) 1531-1536.[105] P. Vrábel, R.G.J.M. van der Lans, K.Ch.A.M. Luyben, L. Boon, A.W. Nienow, Mixing in large-scale vessels stirred with multiple radial or radial and axial up-pumping impellers: modeling and measurements, Chem. Eng. Sci. 55 (2000) 5881-5896.[106] G.J.S. van der Gulik, J.G. Wijers, J.T.F. Keurentjes, Hydrodynamics and scale-up of horizontal stirred reactors, Ind. Eng. Chem. Res. 40 (2001) 4731-4740.[107] R.K. Grenville, T.M. Hutchinson, R.W. Higbee, Optimisation of helical ribbon geometry for blending in the laminar regime, Proceedings of Mixing XVIII, North American Mixing Forum, Pocono, U.S.A, 2001.[108] F. Magelli, G. Montante, D. Pinelli, A. Paglianti, Mixing time in high aspect ratio vessels stirred with multiple impellers, Chem. Eng. Sci. 101 (2013) 712-720.[109] D. García-Cortés, E. Ferrer, E. Barberà, Hydrodynamic characterization of the flow induced by a four-bladed disk-style turbine, Chem. Eng. Res. Des. 79 (2001) 269-273.[110] A.W. Nienow, On the impeller circulation andmixing effectiveness in the turbulent flow regime, Chem. Eng. Sci. 52 (1997) 2557-2565.[111] M. Coroneo, G. Montante, A. Paglianti, F. Magelli, CFD prediction of fluid flow and mixing in stirred tanks: numerical issues about the RANS simulations, Comput. Chem. Eng. 35 (2011) 1959-1968.[112] J. Min, Z. Gao, L. Shi, CFD simulation of mixing in a stirred tank with multiple hydrofoil impellers, Chin. J. Chem. Eng. 13 (2005) 583-588.[113] J. Min, Z. Gao, Large eddy simulations of mixing time in a stirred vessel, Chin. J. Chem. Eng. 14 (2006) 1-7. |
[1] | Guina Yi, Ziqi Cai, Zhengming Gao, J.J. Derksen. Impingement and mixing dynamics of micro-droplets on a solid surface [J]. Chinese Journal of Chemical Engineering, 2022, 52(12): 66-77. |
[2] | Zhuotai Jia, Lele Xu, Xiaoxia Duan, Zai-Sha Mao, Qinghua Zhang, Chao Yang. CFD simulation of flow and mixing characteristics in a stirred tank agitated by improved disc turbines [J]. Chinese Journal of Chemical Engineering, 2022, 50(10): 95-107. |
[3] | Rui Xie, Jun Li, Yang Jin, Da Zou, Ming Chen. Simulation of drop breakage in liquid-liquid system by coupling of CFD and PBM: Comparison of breakage kernels and effects of agitator configurations [J]. Chinese Journal of Chemical Engineering, 2019, 27(5): 1001-1014. |
[4] | Andrej Bombač, Jernej Pirnar. Numerical and experimental analyses of a stirred vessel for a large volumetric flow rate of sparged air [J]. Chinese Journal of Chemical Engineering, 2019, 27(10): 2304-2312. |
[5] | Tenglong Su, Fengling Yang, Meiting Li, Kanghui Wu. Characterization on the hydrodynamics of a covering-plate Rushton impeller [J]. Chin.J.Chem.Eng., 2018, 26(6): 1392-1400. |
[6] | Víctor X. Mendoza-Escamilla, Alejandro Alonzo-García, Helvio R. Mollinedo, Israel González-Neria, J. Antonio Yáñez-Varela, Sergio A. Martinez-Delgadillo. Assessment of k-ε models using tetrahedral grids to describe the turbulent flow field of a PBT impeller and validation through the PIV technique [J]. Chin.J.Chem.Eng., 2018, 26(5): 942-956. |
[7] | Peicheng Luo, Yuncui Tai, Yi Fang, Hua Wu. Mixing times in single andmulti-orifice-impinging transverse (MOIT) jet mixers with crossflow [J]. , 2016, 24(7): 825-831. |
[8] | Jinjin Zhang, Zhengming Gao, Yating Cai, Ziqi Cai, Jie Yang, Yuyun Bao. Mass transfer in gas-liquid stirred reactor with various triple-impeller combinations [J]. Chin.J.Chem.Eng., 2016, 24(6): 703-710. |
[9] | Anca-Irina Galaction, Dan Cascaval, Ramona-MihaelaMatran, Alexandra Tucaliuc. Production of succinic acid in basket and mobile bed bioreactors-Comparative analysis of substrate mass transfer aspects [J]. Chin.J.Chem.Eng., 2016, 24(4): 513-520. |
[10] | Dai'en Shi, Ziqi Cai, Archie Eaglesham, Zhengming Gao. Effects of bubbly flow on bending moment acting on the shaft of a gas sparged vessel stirred by a Rushton turbine [J]. , 2015, 23(3): 482-489. |
[11] | Fengling Yang, Shenjie Zhou, Xiaohui An. Gas-liquid hydrodynamics in a vessel stirred by dual dislocated-blade Rushton impellers [J]. Chin.J.Chem.Eng., 2015, 23(11): 1746-1754. |
[12] | WANGBo, ZHANGJieyu,HEYouduo, ANShengli. Investigation on Eccentric Agitation in the Stirred Vessel Using 3D-Laser Doppler Velocimeter [J]. , 2006, 14(5): 618-625. |
[13] | MIN Jian and GAO Zhengming. Large Eddy Simulations of Mixing Time in a Stirred Tank [J]. , 2006, 14(1): 1-7. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||