[1] T.Z. Qiu, L.C. Wang, Y.B. Lu, M. Zhang, W.M. Qin, S.Q. Wang, L.Z. Wang, Potential assessment of photovoltaic power generation in China, Renew. Sust. Energ. Rev. 154 (2022) 111900. [2] H.C. Bloomfield, D.J. Brayshaw, P.L.M. Gonzalez, A.C. Perez, Sub-seasonal forecasts of demand and wind power and solar power generation for 28 European countries, Earth Syst. Sci. Data 13 (2021) 2259–2274. [3] E. Choi, J.G. Ha, D. Hahm, M.K. Kim, A review of multi hazard risk assessment: Progress, potential, and challenges in the application to nuclear power plants, Int. J. Disaster Risk Reduct. 53 (2021) 101933. [4] H. Matsunaga, M. Orita, Y. Taira, K. Shibayama, K. Shinchi, N. Takamura, Risk perception regarding a nuclear accident and common factors related to health among guardians residing near a restarted nuclear power plant in Japan after the Fukushima accident, Int. J. Disaster Risk Reduct. 70 (2022) 102776. [5] P.K.S. Rathore, N.K. Gupta, D. Yadav, S.K. Shukla, S. Kaul, Thermal performance of the building envelope integrated with phase change material for thermal energy storage: An updated review, Sustain. Cities Soc. 79 (2022) 103690. [6] S. Thanakkasaranee, J. Seo, Tunable temperature-responsive permeable composite films using polyethylene glycol as a phase change material, Food Packag. Shelf Life 28 (2021) 100683. [7] Y.Q. Li, Y.M. Chen, X.B. Huang, S.H. Jiang, G. Wang, Anisotropy-functionalized cellulose-based phase change materials with reinforced solar-thermal energy conversion and storage capacity, Chem. Eng. J. 415 (2021) 129086. [8] X.B. Huang, X. Chen, A. Li, D. Atinafu, H.Y. Gao, W.J. Dong, G. Wang, Shape-stabilized phase change materials based on porous supports for thermal energy storage applications, Chem. Eng. J. 356 (2019) 641–661. [9] D.Y. Zhang, C.C. Li, N.Z. Lin, B.S. Xie, J. Chen, Enhanced properties of mica-based composite phase change materials for thermal energy storage, J. Energy Storage 42 (2021) 103106. [10] Y. Li, Y.Q. Li, X.B. Huang, H.Y. Zheng, G.L. Lu, Z.S. Xi, G. Wang, Graphene-CoO/PEG composite phase change materials with enhanced solar-to-thermal energy conversion and storage capacity, Compos. Sci. Technol. 195 (2020) 108197. [11] J.B. Shi, M. Li, Synthesis and characterization of polyethylene glycol/modified attapulgite form-stable composite phase change material for thermal energy storage, Sol. Energy 205 (2020) 62–73. [12] Y.Y. Xiao, D.Y. Bai, Z.P. Xie, Z.Y. Yang, J.H. Yang, X.D. Qi, Y. Wang, Flexible copper foam-based phase change materials with good stiffness-toughness balance, electro-to-thermal conversion ability and shape memory function for intelligent thermal management, Compos. A Appl. Sci. Manuf. 146 (2021) 106420. [13] T.Y. Ren, G.T. Du, Q.Y. Li, Y.C. Wang, X.W. Fu, W.B. Kong, L. Jiang, J.X. Lei, P. He, Y. Xiao, A polyethylene glycol-based form-stable phase change material supported by nanoarray-modified metal foam, J. Energy Storage 47 (2022) 103592. [14] X.F. Li, H. Li, X.F. Kong, H. Yang, Characterization and experimental investigation of composite phase change materials based on aluminum nitride/expanded graphite, J. Energy Storage 35 (2021) 102326. [15] T.R. Huo, Y.M. Xing, W.Y. Zheng, Z.L. Hao, Analysis of copper foam/low melting point alloy composite phase change material, Appl. Therm. Eng. 204 (2022) 117934. [16] J.B. Shi, M. Li, Surface modification effects in phase change material-infiltrated attapulgite, Mater. Chem. Phys. 254 (2020) 123521. [17] R.L. Wen, X.G. Zhang, Z.H. Huang, M.H. Fang, Y.G. Liu, X.W. Wu, X. Min, W. Gao, S.F. Huang, Preparation and thermal properties of fatty acid/diatomite form-stable composite phase change material for thermal energy storage, Sol. Energy Mater. Sol. Cells 178 (2018) 273-279. [18] Y. Du, H.W. Huang, X.P. Hu, S. Liu, X.X. Sheng, X.L. Li, X. Lu, J.P. Qu, Melamine foam/polyethylene glycol composite phase change material synergistically modified by polydopamine/MXene with enhanced solar-to-thermal conversion, Renew. Energy 171 (2021) 1–10. [19] R.L. Wen, X.G. Zhang, Z.H. Huang, M.H. Fang, Y.G. Liu, X.W. Wu, X. Min, W. Gao, S.F. Huang, Experimental and numerical analysis of the thermal performance of polyurethane foams panels incorporating phase change material, Sol. Energy Mate. Sol. Cells 178 (2018) 273-279. [20] T.T. Ma, L.P. Li, Q.W. Wang, C.G. Guo, High-performance flame retarded paraffin/epoxy resin form-stable phase change material, J. Mater. Sci. 54 (1) (2019) 875–885. [21] F. Xue, Y. Lu, X.D. Qi, J.H. Yang, Y. Wang, Melamine foam-templated graphene nanoplatelet framework toward phase change materials with multiple energy conversion abilities, Chem. Eng. J. 365 (2019) 20–29. [22] Z. Liu, K. Wei, S.F. Wang, B. Ma, X.Q. Wang, W.S. Shi, J.Y. Xu, Effect of high-temperature-resistant epoxy resin/polyethylene glycol 2000 composite stereotyped phase change material particles on asphalt properties, Constr. Build. Mater. 300 (2021) 124007. [23] W.C. Chen, X.H. Liang, W.H. Han, S.F. Wang, X.N. Gao, Z.G. Zhang, Y.T. Fang, 3D shape-stable temperature-regulated macro-encapsulated phase change material: KAl(SO4)2·12H2O-C2H2O4·2H2O-CO(NH2)2 eutectic/polyurethane foam as core and carbon modified silicone resin as shell, J. Mater. Sci. Technol. 100 (2022) 27–35. [24] Z.Y. Lin, Y. Liu, S. Raghavan, K.S. Moon, S.K. Sitaraman, C.P. Wong, Magnetic alignment of hexagonal boron nitride platelets in polymer matrix: Toward high performance anisotropic polymer composites for electronic encapsulation, ACS Appl. Mater. Interfaces 5 (15) (2013) 7633–7640. [25] X.M. Liu, N. Chai, Z.J. Yu, H.L. Xu, X.L. Li, J.Q. Liu, X.W. Yin, R. Riedel, Ultra-light, high flexible and efficient CNTs/Ti3C2-sodium alginate foam for electromagnetic absorption application, J. Mater. Sci. Technol. 35 (12) (2019) 2859–2867. [26] S.J. Liu, X.N. Fei, B.L. Zhang, H.B. Zhao, M.X. Wan, Expanded graphite/paraffin/silica phase change composites with high thermal conductivity and low permeability prepared by the solid-state wet grinding method, Sol. Energy Mater. Sol. Cells 236 (2022) 111484. [27] J.M. Kim, S. Song, Y.J. Hwang, J.Y. Jang, S. Lee, D.I. Shin, S.W. Lee, S. Jeong, S.H. Kim, G.R. Yi, Y.S. Choi, G. Lee, Thermally conductive composites with hydroxylated boron nitrides for the efficient thermal management of superconducting coils, Compos. B Eng. 225 (2021) 109262. [28] Y.Q. Li, X.B. Huang, J.J. Lv, F. Wang, S.H. Jiang, G. Wang, Enzymolysis-treated wood-derived hierarchical porous carbon for fluorescence-functionalized phase change materials, Compos. B Eng. 234 (2022) 109735. [29] W.L. Xiong, Y. Chen, M. Hao, L. Zhang, T. Mei, J.Y. Wang, J.H. Li, X.B. Wang, Facile synthesis of PEG based shape-stabilized phase change materials and their photo-thermal energy conversion, Appl. Therm. Eng. 91 (2015) 630–637. [30] Y. Zhang, H. He, B. Huang, S.Z. Wang, X.F. He, Enhanced thermal conductivity of polyvinyl alcohol insulation composites with m-BN@CNW hybrid materials, Compos. Sci. Technol. 208 (2021) 108766. [31] T.T. Qian, J.H. Li, X. Min, W.M. Guan, Y. Deng, L. Ning, Enhanced thermal conductivity of PEG/diatomite shape-stabilized phase change materials with Ag nanoparticles for thermal energy storage, J. Mater. Chem. A 16 (2015) 8526-8536. [32] Y.Q. Zhao, L. Jin, B.Y. Zou, G. Qiao, T.T. Zhang, L. Cong, F. Jiang, C. Li, Y. Huang, Y.L. Ding, Expanded graphite – Paraffin composite phase hange materials: Effect of particle size on the composite structure and properties, Appl. Therm. Eng. 171 (2020) 115015. [33] Y.L. Liu, J.L. Zheng, Y. Deng, F.Z. Wu, H. Wang, Effect of functional modification of porous medium on phase change behavior and heat storage characteristics of form-stable composite phase change materials: A critical review, J. Energy Storage 44 (2021) 103637. [34] J. Sun, S.L. Simon, The melting behavior of aluminum nanoparticles, Thermochimica Acta 463 (1–2) (2007) 32–40. |