[1] |
Y. Xuan, Q. Li, Heat transfer enhancement of nanofluids, Int. J. Heat Fluid Flow 21(2000) 58-64.
|
[2] |
C.T. Nguyen, G. Roy, C. Gauthier, N. Galanis, Heat transfer enhancement using Al2O3-water nanofluid for an electronic liquid cooling system, Appl. Therm. Eng. 27(2007) 1501-1506.
|
[3] |
M. Nazari, M. Karami, M. Ashouri, Comparing the thermal performance of water, ethylene glycol, alumina and CNT nanofluids in CPU cooling:experimental study, Exp. Thermal Fluid Sci. 57(2014) 371-377.
|
[4] |
M.R. Sohel, S.S. Khaleduzzaman, R. Saidur, A. Hepbasli, M.F.M. Sabri, I.M. Mahbubul, An experimental investigation of heat transfer enhancement of a minichannel heat sink using Al2O3-H2O nanofluid, Int. J. Heat Mass Transf. 74(2014) 164-172.
|
[5] |
S.N. Shoghl, J. Jamali, M.K. Moraveji, Electrical conductivity, viscosity, and density of different nanofluids:an experimental study, Exp. Thermal Fluid Sci. 74(2016) 339-346.
|
[6] |
J.V. Tu, Advantages and disadvantages of using artificial neural networks versus logistic regression for predicting medical outcomes, J. Clin. Epidemiol. 49(1996) 1225-1231.
|
[7] |
E. Ahmadloo, S. Azizi, Prediction of thermal conductivity of various nanofluids using artificial neural network, Int. Commun. Heat Mass Transf. 74(2016) 69-75.
|
[8] |
G.A. Longo, C. Zilio, E. Ceseracciu, M. Reggiani, Application of artificial neural network (ANN) for the prediction of thermal conductivity of oxide-water nanofluids, Nano Energy 1(2012) 290-296.
|
[9] |
M.A. Ariana, B. Vaferi, G. Karimi, Prediction of thermal conductivity of alumina water-based nanofluids by artificial neural networks, Powder Technol. 278(2015) 1-10.
|
[10] |
A. Aminian, Predicting the effective thermal conductivity of nanofluids for intensification of heat transfer using artificial neural network, Powder Technol. 301(2016) 288-309.
|
[11] |
M.H. Esfe, S. Saedodin, N. Sina, M. Afrand, S. Rostami, Designing an artificial neural network to predict thermal conductivity and dynamic viscosity of ferromagnetic nanofluid, Int. Commun. Heat Mass Transf. 68(2015) 50-57.
|
[12] |
M.H. Esfe, M. Afrand, W.M. Yan, M. Akbari, Applicability of artificial neural network and nonlinear regression to predict thermal conductivity modeling of Al2O3-water nanofluids using experimental data, Int. Commun. Heat Mass Transf. 66(2015) 246-249.
|
[13] |
M. Hojjat, S.G. Etemad, R. Bagheri, J. Thibault, Thermal conductivity of non-Newtonian nanofluids:experimental data and modeling using neural network, Int. J. Heat Mass Transf. 54(2011) 1017-1023.
|
[14] |
H. Kurt, M. Kayfeci, Prediction of thermal conductivity of ethylene glycol-water solutions by using artificial neural networks, Appl. Energy 86(2009) 2244-2248.
|
[15] |
H. Karimi, F. Yousefi, Application of artificial neural network-genetic algorithm (ANN-GA) to correlation of density in nanofluids, Fluid Phase Equilib. 336(2012) 79-83.
|
[16] |
M.H. Esfe, S. Wongwises, A. Naderi, A. Asadi, M.R. Safaei, H. Rostamian, A. Karimipour, Thermal conductivity of Cu/TiO2-water/EG hybrid nanofluid:experimental data and modeling using artificial neural network and correlation, Int. Commun. Heat Mass Transf. 66(2015) 100-104.
|
[17] |
T. Hayat, S. Nadeem, Heat transfer enhancement with Ag-CuO/water hybrid nanofluid, Results Phys. 7(2017) 2317-2324.
|
[18] |
Kota Sreenivasa Rao, Khalil El-Hami, Tsutomu Kodaki, Kazumi Matsushige, Keisuke Makino, A novel method for synthesis of silica nanoparticles, J. Colloid Interface Sci. 289(2005) 125-131.
|
[19] |
Akanksha Paraye, S.R Mote, Synthesis of alumina nano-particles and study of heat transfer enhancement, Int. J. Eng. Econ. Manag. 3(2) (2015) 1-3.
|
[20] |
Rajesh Choudhary, Deepak Khurana, Aditya Kumar, Sudhakar Subudhi, Stability analysis of Al2O3/water nanofluids, J. Exp. Nanosci. 12(2017) 140-151.
|
[21] |
Ningbo Zhao, Zhiming Li, Experimental and artificial neural network prediction of thermal conductivity and viscosity for alumina-water nanofluids, Materials 10(2017) 552.
|