[1] A.S. Hoffman, Hydrogels for biomedical applications, Adv. Drug Deliv. Rev. 64 (2012) 18–23. [2] S. Kaihara, S. Matsumura, J.P. Fisher, Synthesis and characterization of cyclic acetal based degradable hydrogels, Eur. J. Pharm. Biopharm. 68 (1) (2008) 67–73. [3] L. Zhang, K.F. Li, W.Q. Xiao, L. Zheng, Y.M. Xiao, H.S. Fan, X.D. Zhang, Preparation of collagen-chondroitin sulfate-hyaluronic acid hybrid hydrogel scaffolds and cell compatibility in vitro, Carbohydr. Polym. 84 (1) (2011) 118–125. [4] L.Y. Wu, G.M. Chen, Z.B. Li, Layered rare-earth hydroxide/polyacrylamide nanocomposite hydrogels with highly tunable photoluminescence, Small 13 (23) (2017) 1604070. [5] C. Keplinger, J.Y. Sun, C.C. Foo, P. Rothemund, G.M. Whitesides, Z.G. Suo, Stretchable, transparent, ionic conductors, Science 341 (6149) (2013) 984–987. [6] F. Wang, Z.Q. Li, M. Khan, K. Tamama, P. Kuppusamy, W.R. Wagner, C.K. Sen, J.J. Guan, Injectable, rapid gelling and highly flexible hydrogel composites as growth factor and cell carriers, Acta Biomater. 6 (6) (2010) 1978–1991. [7] J. Odent, T.J. Wallin, W.Y. Pan, K. Kruemplestaedter, R.F. Shepherd, E.P. Giannelis, Highly elastic, transparent, and conductive 3D-printed ionic composite hydrogels, Adv. Funct. Mater. 27 (33) (2017) 1701807. [8] A.K. Yetisen, N. Jiang, A. Fallahi, Y. Montelongo, G.U. Ruiz-Esparza, A. Tamayol, Y.S. Zhang, I. Mahmood, S.A. Yang, K.S. Kim, H. Butt, A. Khademhosseini, S.H. Yun, Glucose-sensitive hydrogel optical fibers functionalized with phenylboronic acid, Adv. Mater. 29 (15) (2017) 1606380. [9] P. Ferruti, S. Manzoni, S.C.W. Richardson, R. Duncan, N.G. Pattrick, R. Mendichi, M. Casolaro, Amphoteric linear poly(amido-amine)s as endosomolytic polymers: Correlation between physicochemical and biological properties, Macromolecules 33 (21) (2000) 7793–7800. [10] J.W. Song, C.Q. Yuan, T.F. Jiao, R.R. Xing, M.Y. Yang, D.J. Adams, X.H. Yan, Multifunctional antimicrobial biometallohydrogels based on amino acid coordinated self-assembly, Small 16 (8) (2020) 1907309. [11] R.R. Xing, K. Liu, T.F. Jiao, N. Zhang, K. Ma, R.Y. Zhang, Q.L. Zou, G.H. Ma, X.H. Yan, An injectable self-assembling collagen–gold hybrid hydrogel for combinatorial antitumor photothermal/photodynamic therapy, Adv. Mater. 28 (19) (2016) 3669–3676. [12] J.H. Bai, R. Wang, X.M. Wang, S.D. Liu, X.L. Wang, J.M. Ma, Z.H. Qin, T.F. Jiao, Biomineral calcium-ion-mediated conductive hydrogels with high stretchability and self-adhesiveness for sensitive iontronic sensors, Cell Rep. Phys. Sci. 2 (11) (2021) 100623. [13] T.F. Jiao, H. Zhao, J.X. Zhou, Q.R. Zhang, X.N. Luo, J. Hu, Q.M. Peng, X.H. Yan, Self-assembly reduced graphene oxide nanosheet hydrogel fabrication by anchorage of chitosan/silver and its potential efficient application toward dye degradation for wastewater treatments, ACS Sustainable Chem. Eng. 3 (12) (2015) 3130–3139. [14] B.V.S. Jyoti, S.W. Baek, Rheological characterization of ethanolamine gel propellants, J. Energ. Mater. 34 (3) (2016) 260–278. [15] J.W. Cao, Y.C. Zhang, L. Pan, C.X. Shi, X.W. Zhang, J.J. Zou, Synthesis and characterization of gelled high-density fuels with low-molecular mass gellant, Prop., Explos., Pyrotech. 45 (7) (2020) 1018–1026. [16] K. Xue, J.W. Cao, L. Pan, X.W. Zhang, J.J. Zou, Review on design, preparation and performance characterization of gelled fuels for advanced propulsion, Front. Chem. Sci. Eng. (2021) 1–19. [17] X.T.F. E, L. Pan, X.W. Zhang, J.J. Zou, Synthesis and performance of high‐density and high‐thixotropy gelled hydrocarbon fuels, Chin. J. Energ. Mater. 27 (8) (2019) 501–508. (in Chinese) [18] J.W. Cao, L. Pan, X.W. Zhang, J.J. Zou, Physicochemical and rheological properties of Al/JP-10 gelled fuel, Chin. J. Energ. Mater., 28 (5) (2020) 382–390. (in Chinese) [19] X.T.F. E, L. Pan, F. Wang, L. Wang, X.W. Zhang, J.J. Zou, Al-nanoparticle-containing nanofluid fuel: Synthesis, stability, properties, and propulsion performance, Ind. Eng. Chem. Res. 55 (10) (2016) 2738–2745. [20] S. Rahimi, A. Peretz, B. Natan, Rheological matching of gel propellants, J. Propuls. Power 26 (2) (2010) 376–379. [21] A. Saberimoghaddam, Z. Emamifard, M. Mahdi Bahri Rasht Abadi, N. Meyghani, Investigation of the effective parameters on preparation of the gelled IRFNA, Prop., Explos., Pyrotech. 44 (12) (2019) 1621–1627. [22] S. Rahimi, D. Hasan, A. Peretz, Development of laboratory-scale gel propulsion technology, J. Propuls. Power 20 (1) (2004) 93–100. [23] B.V.S. Jyoti, S.W. Baek, Rheological characterization of hydrogen peroxide gel propellant, Int. J. Aeronaut. Space Sci. 15 (2) (2014) 199–204. [24] F.S. Wang, J. Chen, T. Zhang, H.S. Guan, H.M. Li, Experimental study on spray characteristics of ADN/water based gel propellant with impinging jet injectors, Prop., Explos., Pyrotech. 45 (9) (2020) 1357–1365. [25] V.G. Ivanov, O.V. Gavrilyuk, O.V. Glazkov, M.N. Safronov, Specific features of the reaction between ultrafine aluminum and water in a combustion regime, Combust. Explos. Shock. Waves 36 (2) (2000) 213–219. [26] M.G. Gautham, P.A. Ramakrishna, Combustion characteristics of aluminum–water gelled composite propellant, J. Propuls. Power 34 (5) (2018) 1345–1354. [27] B.C. Tappan, M.R. Dirmyer, G.A. Risha, Evidence of a kinetic isotope effect in nanoaluminum and water combustion, Angew. Chem. Int. Ed. 53 (35) (2014) 9218–9221. [28] M.G. Gautham, P.A. Ramakrishna, Propulsive performance of mechanically activated aluminum–water gelled composite propellant, J. Propuls. Power 36 (2) (2020) 294–301. [29] E.M. Ahmed, Hydrogel: Preparation, characterization, and applications: A review, J. Adv. Res. 6 (2) (2015) 105–121. [30] A. Keller, Introductory lecture. Aspects of polymer gels, Faraday Disc. 101 (1995) 1–49. [31] D. Zhao, J.C. Huang, Y. Zhong, K. Li, L.N. Zhang, J. Cai, High-strength and high-toughness double-cross-linked cellulose hydrogels: A new strategy using sequential chemical and physical cross-linking, Adv. Funct. Mater. 26 (34) (2016) 6279–6287. [32] A. Nakayama, A. Kakugo, J.P. Gong, Y. Osada, M. Takai, T. Erata, S. Kawano, High mechanical strength double-network hydrogel with bacterial cellulose, Adv. Funct. Mater. 14 (11) (2004) 1124–1128. [33] Q. Chen, L. Zhu, C. Zhao, Q.M. Wang, J. Zheng, A robust, one-pot synthesis of highly mechanical and recoverable double network hydrogels using thermoreversible sol-gel polysaccharide, Adv. Mater. 25 (30) (2013) 4171–4176. [34] A.Q. Chen, X.D. Guan, X.M. Li, B.H. Zhang, B. Zhang, J. Song, Preparation and characterization of metalized JP-10 gel propellants with excellent thixotropic performance, Prop., Explos., Pyrotech. 42 (9) (2017) 1007–1013. [35] Q. Cao, F. Feng, X. Wu, Time and temperature dependent constitutive equations modeling of RP-1 jet fuel gel, Chin. J. Energ. Mater., 24 (6) (2016) 592–598. (in Chinese) [36] X.P. Qiu, A.M. Pang, F. Jin, W. Wei, K.H. Chen, T.J. Lu, Preparation and characterization of JP-10 gel propellants with tris-urea low-molecular mass gelators, Prop., Explos., Pyrotech. 41 (2) (2016) 212–216. [37] J.D. Dennis, T.D. Kubal, O. Campanella, S.F. Son, T.L. Pourpoint, Rheological characterization of monomethylhydrazine gels, J. Propuls. Power 29 (2) (2013) 313–320. |