Chinese Journal of Chemical Engineering ›› 2023, Vol. 54 ›› Issue (2): 248-256.DOI: 10.1016/j.cjche.2022.10.005
Previous Articles Next Articles
Yinglin Mai1, Xiaoling Xian1, Lei Hu1, Xiaodong Zhang1, Xiaojie Zheng1, Shunhui Tao1, Xiaoqing Lin1,2,3
Received:
2022-05-27
Revised:
2022-10-15
Online:
2023-05-11
Published:
2023-02-28
Contact:
Xiaoqing Lin,E-mail:linxiaoqing@gdut.edu.cn
Supported by:
Yinglin Mai1, Xiaoling Xian1, Lei Hu1, Xiaodong Zhang1, Xiaojie Zheng1, Shunhui Tao1, Xiaoqing Lin1,2,3
通讯作者:
Xiaoqing Lin,E-mail:linxiaoqing@gdut.edu.cn
基金资助:
Yinglin Mai, Xiaoling Xian, Lei Hu, Xiaodong Zhang, Xiaojie Zheng, Shunhui Tao, Xiaoqing Lin. Liquid–liquid extraction of levulinic acid from aqueous solutions using hydrophobic tri-n-octylamine/alcohol-based deep eutectic solvent[J]. Chinese Journal of Chemical Engineering, 2023, 54(2): 248-256.
Yinglin Mai, Xiaoling Xian, Lei Hu, Xiaodong Zhang, Xiaojie Zheng, Shunhui Tao, Xiaoqing Lin. Liquid–liquid extraction of levulinic acid from aqueous solutions using hydrophobic tri-n-octylamine/alcohol-based deep eutectic solvent[J]. 中国化学工程学报, 2023, 54(2): 248-256.
Add to citation manager EndNote|Ris|BibTeX
URL: https://cjche.cip.com.cn/EN/10.1016/j.cjche.2022.10.005
[1] F.D. Pileidis, M.M. Titirici, Levulinic acid biorefineries: New challenges for efficient utilization of biomass, ChemSusChem 9 (6) (2016) 562–582. [2] T. Brouwer, M. Blahusiak, K. Babic, B. Schuur, Reactive extraction and recovery of levulinic acid, formic acid and furfural from aqueous solutions containing sulphuric acid, Sep. Purif. Technol. 185 (2017) 186–195. [3] S. Dutta, I.K.M. Yu, J.J. Fan, J.H. Clark, D.C.W. Tsang, Critical factors for levulinic acid production from starch-rich food waste: Solvent effects, reaction pressure, and phase separation, Green Chem. 24 (1) (2022) 163–175. [4] L.H. Qian, G.J. Lan, X.Y. Liu, Z.Q. Li, Y. Li, Aqueous-phase hydrogenation of levulinic acid over carbon layer protected silica-supported cobalt–ruthenium catalysts, Chin. J. Chem. Eng. 38 (2021) 114–122. [5] F.H. Isikgor, C.R. Becer, Lignocellulosic biomass: A sustainable platform for the production of bio-based chemicals and polymers, Polym. Chem. 6 (25) (2015) 4497–4559. [6] C.S. Zhou, X.J. Yu, H.L. Ma, R.H. He, S. Vittayapadung, Optimization on the conversion of bamboo shoot shell to levulinic acid with environmentally benign acidic ionic liquid and response surface analysis, Chin. J. Chem. Eng. 21 (5) (2013) 544–550. [7] Prescient and Strategic Intelligence Private Limited, Levulinic Acid Market Size Poised to Surpass 34.5 USD million by 2024, https://www.globenewswire.com/news-release/2019/11/07/1942798/0/en/Levulinic-Acid-Market-Size-Poised-to-Surpass-345-Million-by-2024-P-S-Intelligence.html. [8] Prescient and Strategic Intelligence Private Limited, Levulinic Acid Market, https://www.psmarketresearch.com/market-analysis/levulinic-acid-market. [9] D.W. Rackemann, W.O. Doherty, The conversion of lignocellulosics to levulinic acid, Biofuel. Bioprod. Bior. 5 (2) (2011) 198–214. [10] M. Sajid, U. Farooq, G. Bary, M.M. Azim, X.B. Zhao, Sustainable production of levulinic acid and its derivatives for fuel additives and chemicals: Progress, challenges, and prospects, Green Chem. 23 (23) (2021) 9198–9238. [11] C. Chang, X.J. Ma, P.L. Cen, Kinetic studies on wheat straw hydrolysis to levulinic acid, Chin. J. Chem. Eng. 17 (5) (2009) 835–839. [12] C. Chang, X.J. Ma, P.L. Cen, Kinetics of levulinic acid formation from glucose decomposition at high temperature, Chin. J. Chem. Eng. 14 (5) (2006) 708–712. [13] E. Valentin, H.G. Nam, P.H. Kim, H.W. Joo, H.J. Shim, Y.K. Chang, S. Mun, Application of a Dowex-50WX8 chromatographic process to the preparative-scale separation of galactose, levulinic acid, and 5-hydroxymethylfurfural in acid hydrolysate of agarose, Sep. Purif. Technol. 133 (2014) 297–302. [14] A. Senol, Extraction equilibria of formic and levulinic acids using Alamine 308/diluent and conventional solvent systems, Sep. Purif. Technol. 21 (1–2) (2000) 165–179. [15] H. Park, J.W. Kim, K.B. Lee, S. Mun, Comparison of the process performances of a tandem 4-zone SMB and a single-cascade 5-zone SMB for separation of galactose, levulinic acid, and 5-hydroxymethylfurfural in agarose hydrolyzate, Sep. Purif. Technol. 237 (2020) 116357. [16] Z.Q. Zhang, Y.F. Wu, L.J. Gao, G.M. Xiao, Pervaporation separation of levulinic acid aqueous solution by ZSM-5/PDMS composite membrane, J. Appl. Polym. Sci. 138 (1) (2021) 49611. [17] H. Uslu, D. Datta, D. Santos, M. Öztürk, Separation of levulinic acid using polymeric resin, Amberlite IRA-67, J. Chem. Eng. Data 64 (7) (2019) 3044–3049. [18] A. Kumar, D. Shende, K. Wasewar, Central composite design approach for optimization of levulinic acid separation by reactive components, Ind. Eng. Chem. Res. 60 (37) (2021) 13692–13700. [19] J.F. Leal Silva, R. Maciel Filho, M.R. Wolf Maciel, Process design and technoeconomic assessment of the extraction of levulinic acid from biomass hydrolysate using n-butyl acetate, hexane, and 2-methyltetrahydrofuran, Ind. Eng. Chem. Res. 59 (23) (2020) 11031–11041. [20] M.D. Pereira Santana, R. Belém Lavrador, P. de Alcântara Pessoa Filho, Solvent screening for liquid–liquid extraction of levulinic acid from aqueous medium, Sep. Sci. Technol. 57 (10) (2022) 1575–1584. [21] P. Lenihan, A. Orozco, E. O’Neill, M.N.M. Ahmad, D.W. Rooney, G.M. Walker, Dilute acid hydrolysis of lignocellulosic biomass, Chem. Eng. J. 156 (2) (2010) 395–403. [22] X.C. Liang, J.Y. Wang, Y.K. Guo, Z.G. Huang, H.T. Liu, High-efficiency recovery, regeneration and recycling of 1-ethyl-3-methylimidazolium hydrogen sulfate for levulinic acid production from sugarcane bagasse with membrane-based techniques, Bioresour. Technol. 330 (2021) 124984. [23] J.H. Kim, J.G. Na, J.W. Yang, Y.K. Chang, Separation of galactose, 5-hydroxymethylfurfural and levulinic acid in acid hydrolysate of agarose by nanofiltration and electrodialysis, Bioresour. Technol. 140 (2013) 64–72. [24] D. Unlu, O. Ilgen, N. Durmaz Hilmioglu, Reactive separation system for effective upgrade of levulinic acid into ethyl levulinate, Chem. Eng. Res. Des. 118 (2017) 248–258. [25] J.Y. Zheng, X.D. He, C.L. Cai, J.X. Xiao, Y. Liu, Z. Chen, B.Y. Pan, X.Q. Lin, Adsorption isotherm, kinetics simulation and breakthrough analysis of 5-hydroxymethylfurfural adsorption/desorption behavior of a novel polar-modified post-cross-linked poly (divinylbenzene-co-ethyleneglycoldimethacrylate) resin, Chemosphere 239 (2020) 124732. [26] X.Q. Lin, Q.L. Huang, G.X. Qi, L. Xiong, C. Huang, X.F. Chen, H.L. Li, X.D. Chen, Adsorption behavior of levulinic acid onto microporous hyper-cross-linked polymers in aqueous solution: Equilibrium, thermodynamic, kinetic simulation and fixed-bed column studies, Chemosphere 171 (2017) 231–239. [27] X.Q. Lin, Q.L. Huang, G.X. Qi, S.L. Shi, L. Xiong, C. Huang, X.F. Chen, H.L. Li, X.D. Chen, Estimation of fixed-bed column parameters and mathematical modeling of breakthrough behaviors for adsorption of levulinic acid from aqueous solution using SY-01 resin, Sep. Purif. Technol. 174 (2017) 222–231. [28] J.Y. Zheng, B.Y. Pan, J.X. Xiao, X.D. He, Z. Chen, Q.L. Huang, X.Q. Lin, Experimental and mathematical simulation of noncompetitive and competitive adsorption dynamic of formic acid–levulinic acid–5-hydroxymethylfurfural from single, binary, and ternary systems in a fixed-bed column of SY-01 resin, Ind. Eng. Chem. Res. 57 (25) (2018) 8518–8528. [29] X.Q. Lin, L. Xiong, G.X. Qi, S.L. Shi, C. Huang, X.F. Chen, X.D. Chen, Using butanol fermentation wastewater for biobutanol production after removal of inhibitory compounds by micro/mesoporous hyper-cross-linked polymeric adsorbent, ACS Sustain. Chem. Eng. 3 (4) (2015) 702–709. [30] H.M. Ijmker, M. Gramblička, S.R.A. Kersten, A.G.J. van der Ham, B. Schuur, Acetic acid extraction from aqueous solutions using fatty acids, Sep. Purif. Technol. 125 (2014) 256–263. [31] L.M.J. Sprakel, B. Schuur, Solvent developments for liquid–liquid extraction of carboxylic acids in perspective, Sep. Purif. Technol. 211 (2019) 935–957. [32] H. Qin, X.T. Hu, J.W. Wang, H.Y. Cheng, L.F. Chen, Z.W. Qi, Overview of acidic deep eutectic solvents on synthesis, properties and applications, Green Energy Environ. 5 (1) (2020) 8–21. [33] Q. Zhang, K. de Oliveira Vigier, S. Royer, F. Jérôme, Deep eutectic solvents: Syntheses, properties and applications, Chem. Soc. Rev. 41 (21) (2012) 7108–7146. [34] Y.J. Xie, H.F. Dong, S.J. Zhang, X.H. Lu, X.Y. Ji, Solubilities of CO2, CH4, H2, CO and N2 in choline chloride/urea, Green Energy Environ. 1 (3) (2016) 195–200. [35] N.R. Rodriguez, B.S. Molina, M.C. Kroon, Aliphatic + ethanol separation via liquid–liquid extraction using low transition temperature mixtures as extracting agents, Fluid Phase Equilibria 394 (2015) 71–82. [36] C. Florindo, L.C. Branco, I.M. Marrucho, Quest for green-solvent design: From hydrophilic to hydrophobic (deep) eutectic solvents, ChemSusChem 12 (8) (2019) 1549–1559. [37] M. Khajavian, V. Vatanpour, R. Castro-Muñoz, G. Boczkaj, Chitin and derivative chitosan-based structures—Preparation strategies aided by deep eutectic solvents: A review, Carbohydr. Polym. 275 (2022) 118702. [38] R. Castro-Muñoz, A. Msahel, F. Galiano, M. Serocki, J. Ryl, S.B. Hamouda, A. Hafiane, G. Boczkaj, A. Figoli, Towards azeotropic MeOH–MTBE separation using pervaporation chitosan-based deep eutectic solvent membranes, Sep. Purif. Technol. 281 (2022) 119979. [39] M. Momotko, J. Łuczak, A. Przyjazny, G. Boczkaj, First deep eutectic solvent-based (DES) stationary phase for gas chromatography and future perspectives for DES application in separation techniques, J. Chromatogr. A 1635 (2021) 461701. [40] J. Cao, M. Yang, F.L. Cao, J.H. Wang, E.Z. Su, Tailor-made hydrophobic deep eutectic solvents for cleaner extraction of polyprenyl acetates from Ginkgo biloba leaves, J. Clean. Prod. 152 (2017) 399–405. [41] H. Ul Haq, R. Bibi, M. Balal Arain, F. Safi, S. Ullah, R. Castro-Muñoz, G. Boczkaj, Deep eutectic solvent (DES) with silver nanoparticles (Ag-NPs) based assay for analysis of lead (II) in edible oils, Food Chem. 379 (2022) 132085. [42] T. Hanada, M. Goto, Synergistic deep eutectic solvents for lithium extraction, ACS Sustain. Chem. Eng. 9 (5) (2021) 2152–2160. [43] W. Chen, X.W. Li, L.L. Chen, G.L. Zhou, Q.Q. Lu, Y. Huang, Y.H. Chao, W.S. Zhu, Tailoring hydrophobic deep eutectic solvent for selective lithium recovery from the mother liquor of Li2CO3, Chem. Eng. J. 420 (2021) 127648. [44] R. Abro, N. Kiran, S. Ahmed, A. Muhammad, A.S. Jatoi, S.A. Mazari, U. Salma, N.V. Plechkova, Extractive desulfurization of fuel oils using deep eutectic solvents—A comprehensive review, J. Environ. Chem. Eng. 10 (3) (2022) 107369. [45] D.J.G.P. van Osch, L.F. Zubeir, A. van den Bruinhorst, M.A.A. Rocha, M.C. Kroon, Hydrophobic deep eutectic solvents as water-immiscible extractants, Green Chem. 17 (9) (2015) 4518–4521. [46] A.S. Darwish, S.E.E. Warrag, T. Lemaoui, M.K. Alseiari, F.A. Hatab, R. Rafay, I. Alnashef, J. Rodríguez, N. Alamoodi, Green extraction of volatile fatty acids from fermented wastewater using hydrophobic deep eutectic solvents, Fermentation 7 (4) (2021) 226. [47] J.Z. Liu, H.C. Lyu, Y.J. Fu, J.C. Jiang, Q. Cui, Simultaneous extraction of natural organic acid and flavonoid antioxidants from Hibiscus manihot L. flower by tailor-made deep eutectic solvent, LWT 163 (2022) 113533. [48] A.P. Abbott, G. Capper, D.L. Davies, R.K. Rasheed, V. Tambyrajah, Novel solvent properties of choline chloride/urea mixtures, Chem. Commun. (1) (2003) 70–71. [49] R. Verma, T. Banerjee, Liquid–liquid extraction of lower alcohols using menthol-based hydrophobic deep eutectic solvent: Experiments and COSMO-SAC predictions, Ind. Eng. Chem. Res. 57 (9) (2018) 3371–3381. [50] M.H. Zainal-Abidin, M. Hayyan, W.F. Wong, Hydrophobic deep eutectic solvents: Current progress and future directions, J. Ind. Eng. Chem. 97 (2021) 142–162. [51] P. Makoś, A. Przyjazny, G. Boczkaj, Hydrophobic deep eutectic solvents as “green” extraction media for polycyclic aromatic hydrocarbons in aqueous samples, J. Chromatogr. A 1570 (2018) 28–37. [52] L.J. Liu, B.L. Su, Q.F. Wei, X.L. Ren, Selective separation of lactic, malic, and tartaric acids based on the hydrophobic deep eutectic solvents of terpenes and amides, Green Chem. 23 (16) (2021) 5866–5874. [53] M. Marchel, H. Cieśliński, G. Boczkaj, Deep eutectic solvents microbial toxicity: Current state of art and critical evaluation of testing methods, J. Hazard. Mater. 425 (2022) 127963. [54] E. Riveiro, B. González, Á. Domínguez, Extraction of adipic, levulinic and succinic acids from water using TOPO-based deep eutectic solvents, Sep. Purif. Technol. 241 (2020) 116692. [55] T. Brouwer, B.C. Dielis, J.M. Bock, B. Schuur, Hydrophobic deep eutectic solvents for the recovery of bio-based chemicals: Solid–liquid equilibria and liquid–liquid extraction, Processes 9 (5) (2021) 796. [56] R.H. Liu, Y.Q. Geng, Z.J. Tian, N. Wang, M. Wang, G.J. Zhang, Y.Z. Yang, Extraction of platinum(IV) by hydrophobic deep eutectic solvents based on trioctylphosphine oxide, Hydrometallurgy 199 (2021) 105521. [57] Y.H. Ji, Z.R. Meng, J. Zhao, H.Q. Zhao, L.S. Zhao, Eco-friendly ultrasonic assisted liquid–liquid microextraction method based on hydrophobic deep eutectic solvent for the determination of sulfonamides in fruit juices, J. Chromatogr. A 1609 (2020) 460520. [58] D. Núñez, P. Oulego, S. Collado, F.A. Riera, M. Díaz, Recovery of organic acids from pre-treated Kraft black liquor using ultrafiltration and liquid–liquid extraction, Sep. Purif. Technol. 284 (2022) 120274. [59] G.M. Teke, R.W.M. Pott, Design and evaluation of a continuous semipartition bioreactor for in situ liquid–liquid extractive fermentation, Biotechnol. Bioeng. 118 (1) (2021) 58–71. [60] C. Florindo, L. Romero, I. Rintoul, L.C. Branco, I.M. Marrucho, From phase change materials to green solvents: Hydrophobic low viscous fatty acid-based deep eutectic solvents, ACS Sustain. Chem. Eng. 6 (3) (2018) 3888–3895. [61] X.J. Zheng, X.L. Xian, L. Hu, S.H. Tao, X.D. Zhang, Y. Liu, X.Q. Lin, Efficient short-time hydrothermal depolymerization of sugarcane bagasse in one-pot for cellulosic ethanol production without solid–liquid separation, water washing, and detoxification, Bioresour. Technol. 339 (2021) 125575. [62] X.Q. Lin, J.L. Wu, J.S. Fan, W.B. Qian, X.Q. Zhou, C. Qian, X.H. Jin, L.L. Wang, J.X. Bai, H.J. Ying, Adsorption of butanol from aqueous solution onto a new type of macroporous adsorption resin: Studies of adsorption isotherms and kinetics simulation, J. Chem. Technol. Biotechnol. 87 (7) (2012) 924–931. [63] X.Q. Lin, J.L. Wu, X.H. Jin, J.S. Fan, R.J. Li, Q.S. Wen, W.B. Qian, D. Liu, X.C. Chen, Y. Chen, J.J. Xie, J.X. Bai, H.J. Ying, Selective separation of biobutanol from acetone–butanol–ethanol fermentation broth by means of sorption methodology based on a novel macroporous resin, Biotechnol. Prog. 28 (4) (2012) 962–972. [64] M. Marchel, H. Cieśliński, G. Boczkaj, Thermal instability of choline chloride-based deep eutectic solvents and its influence on their toxicity—Important limitations of DESs as sustainable materials, Ind. Eng. Chem. Res. 61 (30) (2022) 11288–11300. [65] W.J. Chen, Z.M. Xue, J.F. Wang, J.Y. Jiang, X.H. Zhao, T.C. Mu, Investigation on the thermal stability of deep eutectic solvents, Acta Phys. Chim. Sin. 34 (8) (2018) 904–911. [66] D. Datta, M.E. Marti, H. Uslu, S. Kumar, Extraction of levulinic acid using tri-n-butyl phosphate and tri-n-octylamine in 1-octanol: Column design, J. Taiwan Inst. Chem. Eng. 66 (2016) 407–413. [67] S. Eda, A. Borra, R. Parthasarathy, S. Bankupalli, S. Bhargava, P.K. Thella, Recovery of levulinic acid by reactive extraction using tri-n-octylamine in methyl isobutyl ketone: Equilibrium and thermodynamic studies and optimization using Taguchi multivariate approach, Sep. Purif. Technol. 197 (2018) 314–324. [68] A. Farzaneh, M. Zhou, O.N. Antzutkin, Z. Bacsik, J. Hedlund, A. Holmgren, M. Grahn, Adsorption of butanol and water vapors in silicalite-1 films with a low defect density, Langmuir 32 (45) (2016) 11789–11798. [69] X.R. Qiu, Z.D. Chang, H.L. Zhou, W.J. Li, B. Dong, Effect of hydroxyl on formation of viscoelastic scum during solvent extraction of sulfuric acid with trioctylamine, Sep. Purif. Technol. 86 (2012) 137–142. [70] A. Mohanty, N. Devi, L.B. Sukla, N. Swain, Liquid–liquid extraction of Co(II) from nitrate solution using TOA, Mater. Today Proc. 30 (2020) 262–266. |
[1] | Pan Wang, Mengdei Zhou, Zhuangxin Wei, Lu Liu, Tao Cheng, Xiaohua Tian, Jianming Pan. Preparation of bowl-shaped polydopamine surface imprinted polymer composite adsorbent for specific separation of 2′-deoxyadenosine [J]. Chinese Journal of Chemical Engineering, 2023, 60(8): 69-79. |
[2] | Wenwen Zhang, Zhigang Xue, Liyun Cui, Haoliang Gao, Di Zhao, Rongfei Zhou, Weihong Xing. Synthesis of an IMF zeolite membrane for the separation of xylene isomer [J]. Chinese Journal of Chemical Engineering, 2023, 60(8): 205-211. |
[3] | Xiaolin Guo, Zhaoyang Zhang, Pengfei Xing, Shuai Wang, Yibing Guo, Yanxin Zhuang. Kinetic mechanism of copper extraction from methylchlorosilane slurry residue using hydrogen peroxide as oxidant [J]. Chinese Journal of Chemical Engineering, 2023, 60(8): 228-234. |
[4] | Hammad Saulat, Jianhua Yang, Tao Yan, Waseem Raza, Wensen Song, Gaohong He. Tungsten incorporated mobil-type eleven zeolite membranes: Facile synthesis and tuneable wettability for highly efficient separation of oil/water mixtures [J]. Chinese Journal of Chemical Engineering, 2023, 60(8): 242-252. |
[5] | Yuan Liu, Hanting Xiong, Jingwen Chen, Shixia Chen, Zhenyu Zhou, Zheling Zeng, Shuguang Deng, Jun Wang. One-step ethylene separation from ternary C2 hydrocarbon mixture with a robust zirconium metal-organic framework [J]. Chinese Journal of Chemical Engineering, 2023, 59(7): 9-15. |
[6] | Borui Liu, Tao Zhang, Yi Zheng, Kailong Li, Hui Pan, Hao Ling. A dynamic control structure of liquid-only transfer stream distillation column [J]. Chinese Journal of Chemical Engineering, 2023, 59(7): 135-145. |
[7] | Wen Yu, Yiyang Bo, Yiling Luo, Xiyan Huang, Rixiang Zhang, Jiaheng Zhang. Enhancing effect of choline chloride-based deep eutectic solvents with polyols on the aqueous solubility of curcumin-insight from experiment and theoretical calculation [J]. Chinese Journal of Chemical Engineering, 2023, 59(7): 160-168. |
[8] | Yafei Su, Xuke Zhang, Hui Li, Donglai Peng, Yatao Zhang. In-situ incorporation of halloysite nanotubes with 2D zeolitic imidazolate framework-L based membrane for dye/salt separation [J]. Chinese Journal of Chemical Engineering, 2023, 58(6): 103-111. |
[9] | Chaobo Zhang, Xiaoyong Yang, Jian Dai, Wenxia Liu, Hang Yang, Zhishan Bai. Efficient extraction of phenol from wastewater by ionic micro-emulsion method: Anionic and cationic [J]. Chinese Journal of Chemical Engineering, 2023, 58(6): 137-145. |
[10] | Shuangtai Liu, Lei He, Qiuxiang Yao, Xi Li, Linyang Wang, Jing Wang, Ming Sun, Xiaoxun Ma. Separation and analysis of six fractions in low temperature coal tar by column chromatography [J]. Chinese Journal of Chemical Engineering, 2023, 58(6): 256-265. |
[11] | Wende Tian, Jiawei Zhang, Zhe Cui, Haoran Zhang, Bin Liu. Microscopic mechanism study and process optimization of dimethyl carbonate production coupled biomass chemical looping gasification system [J]. Chinese Journal of Chemical Engineering, 2023, 58(6): 291-305. |
[12] | Hui Yi Leong, Xiao-Qian Fu, Xiang-Yu Liu, Shan-Jing Yao, Dong-Qiang Lin. Characterisation and separation of infectious bursal disease virus-like particles using aqueous two-phase systems [J]. Chinese Journal of Chemical Engineering, 2023, 57(5): 72-78. |
[13] | Yunchang Fan, Chunyan Zhu, Sheli Zhang, Lei Zhang, Qiang Wang, Feng Wang. Efficient and selective extraction of sinomenine by deep eutectic solvents [J]. Chinese Journal of Chemical Engineering, 2023, 57(5): 109-117. |
[14] | Kai Xue, Yanchun Xue, Jing Wang, Shuya Zhang, Xingmei Guo, Xiangjun Zheng, Fu Cao, Qinghong Kong, Junhao Zhang, Zhong Jin. KOH-assisted aqueous synthesis of ZIF-67 with high-yield and its derived cobalt selenide/carbon composites for high-performance Li-ion batteries [J]. Chinese Journal of Chemical Engineering, 2023, 57(5): 214-223. |
[15] | Arnop Dutta, Md. Tuhinur R. Joy, Sk. Md. Ali Ahsan, Mansour K. Gatasheh, Dileep Kumar, Malik Abdul Rub, Md. Anamul Hoque, Mohammad Majibur Rahman, Nasrul Hoda, D.M. Shafiqul Islam. Physico-chemical parameters for the assembly of moxifloxacin hydrochloride and cetyltrimethylammonium chloride mixture in aqueous and alcoholic media [J]. Chinese Journal of Chemical Engineering, 2023, 57(5): 280-289. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||