Chinese Journal of Chemical Engineering ›› 2023, Vol. 54 ›› Issue (2): 257-263.DOI: 10.1016/j.cjche.2022.04.013
Previous Articles Next Articles
Qingyue Han1, Suqing Wang1, Wenhan Kong1, Bing Ji1, Haihui Wang2
Received:
2022-01-22
Revised:
2022-03-23
Online:
2023-05-11
Published:
2023-02-28
Contact:
Suqing Wang,E-mail:cesqwang@scut.edu.cn;Haihui Wang,E-mail:cehhwang@tsinghua.edu.cn
Supported by:
Qingyue Han1, Suqing Wang1, Wenhan Kong1, Bing Ji1, Haihui Wang2
通讯作者:
Suqing Wang,E-mail:cesqwang@scut.edu.cn;Haihui Wang,E-mail:cehhwang@tsinghua.edu.cn
基金资助:
Qingyue Han, Suqing Wang, Wenhan Kong, Bing Ji, Haihui Wang. Composite polymer electrolyte reinforced by graphitic carbon nitride nanosheets for room-temperature all-solid-state lithium batteries[J]. Chinese Journal of Chemical Engineering, 2023, 54(2): 257-263.
Qingyue Han, Suqing Wang, Wenhan Kong, Bing Ji, Haihui Wang. Composite polymer electrolyte reinforced by graphitic carbon nitride nanosheets for room-temperature all-solid-state lithium batteries[J]. 中国化学工程学报, 2023, 54(2): 257-263.
[1] J.B. Goodenough, Y. Kim, Challenges for rechargeable Li batteries, Chem. Mater. 22 (3) (2010) 587–603. [2] H. Liu, T. Li, X.Q. Xu, P. Shi, X.Q. Zhang, R. Xu, X.B. Cheng, J.Q. Huang, Stable interfaces constructed by concentrated ether electrolytes to render robust lithium metal batteries, Chin. J. Chem. Eng. 37 (2021) 152–158. [3] H.F. Xiang, J.J. Chen, Z. Li, H.H. Wang, An inorganic membrane as a separator for lithium-ion battery, J. Power Sources 196 (20) (2011) 8651–8655. [4] A. Manthiram, X. Yu, S. Wang, Lithium battery chemistries enabled by solid-state electrolytes“>, Nat. Rev. Mater. 2”> (2017) 16103. [5] Yang C, Fu K, Zhang Y, Hitz E, Hu L, Protected lithium-metal anodes in batteries: From liquid to solid, Adv. Mater. 29 (36) (2017) 2017 Sep;29(36). [6] X. Shen, R. Zhang, S.H. Wang, X. Chen, C. Zhao, E. Kuzmina, E. Karaseva, V. Kolosnitsyn, Q. Zhang, The dynamic evolution of aggregated lithium dendrites in lithium metal batteries, Chin. J. Chem. Eng. 37 (2021) 137–143. [7] Z.Y. Jiang, H.Q. Xie, S.Q. Wang, X. Song, X. Yao, H.H. Wang, Perovskite membranes with vertically aligned microchannels for all-solid-state lithium batteries, Adv. Energy Mater. 8 (27) (2018) 1801433. [8] Z.Y. Jiang, S.Q. Wang, X.Z. Chen, W.L. Yang, X. Yao, X.C. Hu, Q.Y. Han, H.H. Wang, Lithium-metal batteries: Tape-casting Li 0.34 La 0.56 TiO 3 ceramic electrolyte films permit high energy density of lithium–metal batteries (adv. mater. 6/2020), Adv. Mater. 32 (6) (2020) 2070045. [9] Y. Bai, Y.B. Zhao, W.D. Li, L.H. Meng, Y.P. Bai, G.R. Chen, Organic-inorganic multi-scale enhanced interfacial engineering of sulfide solid electrolyte in Li-S battery, Chem. Eng. J. 396 (2020) 125334. [10] D.X. Cao, Y.B. Zhang, A.M. Nolan, X. Sun, C. Liu, J.Z. Sheng, Y.F. Mo, Y. Wang, H.L. Zhu, Stable thiophosphate-based all-solid-state lithium batteries through conformally interfacial nanocoating, Nano Lett. 20 (3) (2020) 1483–1490. [11] C.H. Wang, K.R. Adair, J.W. Liang, X.N. Li, Y.P. Sun, X. Li, J.W. Wang, Q. Sun, F.P. Zhao, X.T. Lin, R.Y. Li, H. Huang, L. Zhang, R. Yang, S.G. Lu, X.L. Sun, Solid-state plastic crystal electrolytes: Effective protection interlayers for sulfide-based all-solid-state lithium metal batteries, Adv. Funct. Mater. 29 (26) (2019) 1900392. [12] M.K. Tufail, N. Ahmad, L. Yang, L. Zhou, M.A. Naseer, R.J. Chen, W. Yang, A panoramic view of Li7P3S11 solid electrolytes synthesis, structural aspects and practical challenges for all-solid-state lithium batteries, Chin. J. Chem. Eng. 39 (2021) 16–36. [13] Q.Y. Han, S.Q. Wang, Z.Y. Jiang, X.C. Hu, H.H. Wang, Composite polymer electrolyte incorporating metal–organic framework nanosheets with improved electrochemical stability for all-solid-state Li metal batteries, ACS Appl. Mater. Interfaces 12 (18) (2020) 20514–20521. [14] Z.G. Xue, D. He, X.L. Xie, Poly(ethylene oxide)-based electrolytes for lithium-ion batteries, J. Mater. Chem. A 3 (38) (2015) 19218–19253. [15] Z.Y. Huang, W.Y. Pang, P. Liang, Z.H. Jin, N. Grundish, Y.T. Li, C.A. Wang, A dopamine modified Li6.4La3Zr1.4Ta0.6O12/PEO solid-state electrolyte: Enhanced thermal and electrochemical properties, J. Mater. Chem. A 7 (27) (2019) 16425–16436. [16] H.Y. Huo, Y. Chen, J. Luo, X.F. Yang, X.X. Guo, X.L. Sun, Rational design of hierarchical “ceramic-in-polymer” and “polymer-in-ceramic” electrolytes for dendrite-free solid-state batteries, Adv. Energy Mater. 9 (17) (2019) 1804004. [17] Z. Li, H.M. Huang, J.K. Zhu, J.F. Wu, H. Yang, L. Wei, X. Guo, Ionic conduction in composite polymer electrolytes: Case of PEO: Ga-LLZO composites, ACS Appl. Mater. Interfaces 11 (1) (2019) 784–791. [18] M. Liu, Z. Cheng, S. Ganapathy, C. Wang, L.A. Haverkate, M. Tułodziecki, S. Unnikrishnan, M. Wagemaker, Tandem interface and bulk Li-ion transport in a hybrid solid electrolyte with microsized active filler, ACS Energy Lett. 4 (9) (2019) 2336–2342. [19] Q. Ma, X.X. Zeng, J.P. Yue, Y.X. Yin, T.T. Zuo, J.Y. Liang, Q. Deng, X.W. Wu, Y.G. Guo, Viscoelastic and nonflammable interface design–enabled dendrite-free and safe solid lithium metal batteries, Adv. Energy Mater. 9 (13) (2019) 1803854. [20] R.A. Tong, L.H. Chen, B.B. Fan, G. Shao, R.P. Liu, C.A. Wang, Solvent-free process for blended PVDF-HFP/PEO and LLZTO composite solid electrolytes with enhanced mechanical and electrochemical properties for lithium metal batteries, ACS Appl. Energy Mater. 4 (10) (2021) 11802–11812. [21] X.Z. Chen, W.J. He, L.X. Ding, S.Q. Wang, H.H. Wang, Enhancing interfacial contact in all solid state batteries with a cathode-supported solid electrolyte membrane framework, Energy Environ. Sci. 12 (3) (2019) 938–944. [22] J.M. Yu, C. Wang, S.H. Li, N. Liu, J. Zhu, Z.D. Lu, Li +-containing, continuous silica nanofibers for high Li + conductivity in composite polymer electrolyte, Small 15 (44) (2019) 1902729. [23] J.M. Yu, C. Wang, S.H. Li, N. Liu, J. Zhu, Z.D. Lu, Li +-containing, continuous silica nanofibers for high Li + conductivity in composite polymer electrolyte, Small 15 (44) (2019) 1902729. [24] L.F. Hu, Z.L. Tang, Z.T. Zhang, New composite polymer electrolyte comprising mesoporous lithium aluminate nanosheets and PEO/LiClO4, J. Power Sources 166 (1) (2007) 226–232. [25] W.W. Li, S.P. Zhang, B.R. Wang, S. Gu, D. Xu, J.N. Wang, C.H. Chen, Z.Y. Wen, Nanoporous adsorption effect on alteration of the Li + diffusion pathway by a highly ordered porous electrolyte additive for high-rate all-solid-state lithium metal batteries, ACS Appl. Mater. Interfaces 10 (28) (2018) 23874–23882. [26] H.B. Song, L. Liu, B.X. Feng, H.Z. Wang, M. Xiao, H.J. Gai, Y.B. Tang, X.F. Qu, T.T. Huang, Modified g-C3N4 derived from ionic liquid and urea for promoting visible-light photodegradation of organic pollutants, Chin. J. Chem. Eng. 40 (2021) 293–303. [27] G.G. Zhang, J.S. Zhang, M.W. Zhang, X.C. Wang, Polycondensation of thiourea into carbon nitride semiconductors as visible light photocatalysts, J. Mater. Chem. 22 (16) (2012) 8083. [28] Q.C. Lin, Z.S. Li, T.J. Lin, B.L. Li, X.C. Liao, H.Q. Yu, C.L. Yu, Controlled preparation of P-doped g-C3N4 nanosheets for efficient photocatalytic hydrogen production, Chin. J. Chem. Eng. 28 (10) (2020) 2677–2688. [29] R. Zheng, C.H. Li, C.Z. Zhang, W.T. Wang, L. Wang, L.J. Feng, J.J. Bian, Photo-reduction of NO by g-C3N4@foamed ceramic, Chin. J. Chem. Eng. 28 (7) (2020) 1840–1846. [30] Y.P. Guo, P. Niu, Y.Y. Liu, Y. Ouyang, D. Li, T.Y. Zhai, H.Q. Li, Y. Cui, An autotransferable g-C 3 N 4 Li +-modulating layer toward stable lithium anodes, Adv. Mater. 31 (27) (2019) 1900342. [31] X.L. Wang, G.R. Li, M.J. Li, R.P. Liu, H.B. Li, T.Y. Li, M.Z. Sun, Y.R. Deng, M. Feng, Z.W. Chen, Reinforced polysulfide barrier by g-C3N4/CNT composite towards superior lithium-sulfur batteries, J. Energy Chem. 53 (2021) 234–240. [32] S.G. Wang, Y.H. Shi, C.Y. Fan, J.H. Liu, Y.F. Li, X.L. Wu, H.M. Xie, J.P. Zhang, H.Z. Sun, Layered g-C3N4@Reduced graphene oxide composites as anodes with improved rate performance for lithium-ion batteries, ACS Appl. Mater. Interfaces 10 (36) (2018) 30330–30336. [33] Z.J. Sun, Y.H. Li, S.Y. Zhang, L. Shi, H. Wu, H.T. Bu, S.J. Ding, G-C3N4 nanosheets enhanced solid polymer electrolytes with excellent electrochemical performance, mechanical properties, and thermal stability, J. Mater. Chem. A 7 (18) (2019) 11069–11076. [34] Y.J. Wang, L.B. Li, Y.Y. Wei, J. Xue, H. Chen, L. Ding, J. Caro, H.H. Wang, Water transport with ultralow friction through partially exfoliated g-C3N4 nanosheet membranes with self-supporting spacers, Angewandte Chemie Int. Ed. 56 (31) (2017) 8974–8980. [35] P. Niu, L.L. Zhang, G. Liu, H.M. Cheng, Graphene-like carbon nitride nanosheets for improved photocatalytic activities, Adv. Funct. Mater. 22 (22) (2012) 4763–4770. [36] L.F. Liu, Y.S. Zhou, J. Xue, H.H. Wang, Enhanced antipressure ability through graphene oxide membrane by intercalating g-C3N4 nanosheets for water purification, Aiche J. 65 (10) (2019) e16699. [37] Y. Song, L. Yang, J. Li, M. Zhang, Y. Wang, S. Li, S. Chen, K. Yang, K. Xu, F. Pan, Synergistic dissociation-and-trapping effect to promote Li-ion conduction in polymer electrolytes via oxygen vacancies, Small 17 (42) (2021) 2102039. [38] N. Chen, Y.J. Dai, Y. Xing, L.L. Wang, C. Guo, R.J. Chen, S.J. Guo, F. Wu, Biomimetic ant-nest ionogel electrolyte boosts the performance of dendrite-free lithium batteries, Energy Environ. Sci. 10 (7) (2017) 1660–1667. [39] H.Y. Huo, J.Y. Sun, C. chen, X.L. Meng, M.H. He, N. Zhao, X.X. Guo, Flexible interfaces between Si anodes and composite electrolytes consisting of poly(propylene carbonates) and garnets for solid-state batteries, J. Power Sources 383 (2018) 150–156. [40] O. Borodin, G.D. Smith, W. Henderson, Li+ cation environment, transport, and mechanical properties of the LiTFSI doped N-methyl-N-alkylpyrrolidinium+TFSI- ionic liquids, J. Phys. Chem. B 110 (34) (2006) 16879–16886. [41] Y. Umebayashi, T. Mitsugi, S. Fukuda, T. Fujimori, K. Fujii, R. Kanzaki, M. Takeuchi, S.I. Ishiguro, Lithium ion solvation in room-temperature ionic liquids involving bis(trifluoromethanesulfonyl) imide anion studied by Raman spectroscopy and DFT calculations, J. Phys. Chem. B 111 (45) (2007) 13028–13032. [42] J.H. Huang, A.F. Hollenkamp, Thermal behavior of ionic liquids containing the FSI anion and the Li+ cation, J. Phys. Chem. C 114 (49) (2010) 21840–21847. [43] D.C. Lin, P.Y. Yuen, Y.Y. Liu, W. Liu, N. Liu, R.H. Dauskardt, Y. Cui, A silica-aerogel-reinforced composite polymer electrolyte with high ionic conductivity and high modulus, Adv. Mater. 30 (32) (2018) 1802661. [44] Z.H. Yang, Z.Y. Sun, C. Liu, Y.H. Li, G.L. Zhou, S.W. Zuo, J.T. Wang, W.J. Wu, Lithiated nanosheets hybridized solid polymer electrolyte to construct Li+ conduction highways for advanced all-solid-state lithium battery, J. Power Sources 484 (2021) 229287. [45] D.C. Zhang, L. Zhang, K. Yang, H.Q. Wang, C. Yu, D. Xu, B. Xu, L.M. Wang, Superior blends solid polymer electrolyte with integrated hierarchical architectures for all-solid-state lithium-ion batteries, ACS Appl. Mater. Interfaces 9 (42) (2017) 36886–36896. [46] M.B. McDonald, P.T. Hammond, Efficient transport networks in a dual electron/lithium-conducting polymeric composite for electrochemical applications, ACS Appl. Mater. Interfaces 10 (18) (2018) 15681–15690. [47] Y. Yang, L. Li, L.L. Liu, Y. Xiao, S.M. Chen, Ce(NO3)3 as an electrolyte additive to regulate uniform lithium deposition for stable all-solid-state batteries, Solid State Ion. 374 (2022) 115831. [48] H.Y. Huo, B. Wu, T. Zhang, X.S. Zheng, L. Ge, T.W. Xu, X.X. Guo, X.L. Sun, Anion-immobilized polymer electrolyte achieved by cationic metal-organic framework filler for dendrite-free solid-state batteries, Energy Storage Mater. 18 (2019) 59–67. |
[1] | Yingli Li, Zhishuncheng Li, Guangfei Qu, Rui Li, Shuaiyu Liang, Junhong Zhou, Wei Ji, Huiming Tang. Mechanism, behaviour and application of iron nitrate modified carbon nanotube composites for the adsorption of arsenic in aqueous solutions [J]. Chinese Journal of Chemical Engineering, 2023, 60(8): 26-36. |
[2] | Pan Wang, Mengdei Zhou, Zhuangxin Wei, Lu Liu, Tao Cheng, Xiaohua Tian, Jianming Pan. Preparation of bowl-shaped polydopamine surface imprinted polymer composite adsorbent for specific separation of 2′-deoxyadenosine [J]. Chinese Journal of Chemical Engineering, 2023, 60(8): 69-79. |
[3] | Jiahao Lu, Zhimeng Wang, Qi Zhang, Cheng Sun, Yanyan Zhou, Sijia Wang, Xiangyun Qiu, Shoudong Xu, Rentian Chen, Tao Wei. The effects of amino groups and open metal sites of MOFs on polymer-based electrolytes for all-solid-state lithium metal batteries [J]. Chinese Journal of Chemical Engineering, 2023, 60(8): 80-89. |
[4] | Yafei Su, Xuke Zhang, Hui Li, Donglai Peng, Yatao Zhang. In-situ incorporation of halloysite nanotubes with 2D zeolitic imidazolate framework-L based membrane for dye/salt separation [J]. Chinese Journal of Chemical Engineering, 2023, 58(6): 103-111. |
[5] | Shanghong Ma, Haitao Zhang, Jianbo Qu, Xiuzhong Zhu, Qingfei Hu, Jianyong Wang, Peng Ye, Futao Sai, Shiwei Chen. Preparation of waterborne polyurethane/β-cyclodextrin composite nanosponge by ion condensation method and its application in removing of dyes from wastewater [J]. Chinese Journal of Chemical Engineering, 2023, 58(6): 124-136. |
[6] | Jianhui Zhou, Xin Lai, Jianfeng Hu, Haijie Qi, Shan Liu, Zhengguo Zhang. Design of a graphene oxide@melamine foam/polyaniline@erythritol composite phase change material for thermal energy storage [J]. Chinese Journal of Chemical Engineering, 2023, 58(6): 282-290. |
[7] | Hui Yi Leong, Xiao-Qian Fu, Xiang-Yu Liu, Shan-Jing Yao, Dong-Qiang Lin. Characterisation and separation of infectious bursal disease virus-like particles using aqueous two-phase systems [J]. Chinese Journal of Chemical Engineering, 2023, 57(5): 72-78. |
[8] | Chao Yang, Zhelin Su, Yeshuang Wang, Huiling Fan, Meisheng Liang, Zhaohui Chen. Insight into the effect of gel drying temperature on the structure and desulfurization performance of ZnO/SiO2 adsorbents [J]. Chinese Journal of Chemical Engineering, 2023, 56(4): 233-241. |
[9] | Taoyan Mao, Runhui Xiao, Peng Liu, Jiale Chen, Junqiang Luo, Su Luo, Fengwei Xie, Cheng Zheng. Facile fabrication of durable superhydrophobic fabrics by silicon polyurethane membrane for oil/water separation [J]. Chinese Journal of Chemical Engineering, 2023, 55(3): 73-83. |
[10] | Jiacheng Chen, Jincheng Wang, Shuhong Li, Kailing Xiang, Shiqiang Song. Pyridine terminated polyurethane dendrimer/chlorinated butyl rubber nanocomposites with excellent mechanical and damping properties [J]. Chinese Journal of Chemical Engineering, 2023, 53(1): 211-221. |
[11] | Luyao Guo, Mengru Wang, Ronghe Lin, Jiaxin Ma, Shuanghao Zheng, Xiaoling Mou, Jun Zhang, Zhong-Shuai Wu, Yunjie Ding. Assembly of N- and P-functionalized carbon nanostructures derived from precursor-defined ternary copolymers for high-capacity lithium-ion batteries [J]. Chinese Journal of Chemical Engineering, 2023, 53(1): 280-288. |
[12] | Lin-Bing Zou, Jue-Ying Gong, Xiao-Jie Ju, Zhuang Liu, Wei Wang, Rui Xie, Liang-Yin Chu. Smart membranes for biomedical applications [J]. Chinese Journal of Chemical Engineering, 2022, 49(9): 34-45. |
[13] | Fenfen You, Qing-Hong Shi. In situ investigation of lysozyme adsorption into polyelectrolyte brushes by quartz crystal microbalance with dissipation [J]. Chinese Journal of Chemical Engineering, 2022, 48(8): 106-115. |
[14] | Yingmeng Zhang, Luting Liu, Qingwei Deng, Wanlin Wu, Yongliang Li, Xiangzhong Ren, Peixin Zhang, Lingna Sun. Hybrid CuO-Co3O4 nanosphere/RGO sandwiched composites as anode materials for lithium-ion batteries [J]. Chinese Journal of Chemical Engineering, 2022, 47(7): 185-192. |
[15] | Jipeng Dong, Fei Wang, Guanghui Chen, Shougui Wang, Cailin Ji, Fei Gao. Fabrication of nickel oxide functionalized zeolite USY composite as a promising adsorbent for CO2 capture [J]. Chinese Journal of Chemical Engineering, 2022, 46(6): 207-213. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||