Chinese Journal of Chemical Engineering ›› 2023, Vol. 55 ›› Issue (3): 202-211.DOI: 10.1016/j.cjche.2022.05.018
Previous Articles Next Articles
Bowen Jiang, Jia Liu, Guoqiang Yang, Zhibing Zhang
Received:
2022-01-17
Revised:
2022-05-10
Online:
2023-06-03
Published:
2023-03-28
Contact:
Guoqiang Yang,E-mail:ygq@nju.edu.cn;Zhibing Zhang,E-mail:zbzhang@nju.edu.cn
Supported by:
Bowen Jiang, Jia Liu, Guoqiang Yang, Zhibing Zhang
通讯作者:
Guoqiang Yang,E-mail:ygq@nju.edu.cn;Zhibing Zhang,E-mail:zbzhang@nju.edu.cn
基金资助:
Bowen Jiang, Jia Liu, Guoqiang Yang, Zhibing Zhang. Efficient conversion of CO2 into cyclic carbonates under atmospheric by halogen and metal-free poly(ionic liquid)s[J]. Chinese Journal of Chemical Engineering, 2023, 55(3): 202-211.
Bowen Jiang, Jia Liu, Guoqiang Yang, Zhibing Zhang. Efficient conversion of CO2 into cyclic carbonates under atmospheric by halogen and metal-free poly(ionic liquid)s[J]. 中国化学工程学报, 2023, 55(3): 202-211.
Add to citation manager EndNote|Ris|BibTeX
URL: https://cjche.cip.com.cn/EN/10.1016/j.cjche.2022.05.018
[1] F. Zhang, Y.Y. Wang, X.C. Zhang, X.P. Zhang, H.Z. Liu, B.X. Han, Recent advances in the coupling of CO2 and epoxides into cyclic carbonates under halogen-free condition, Green Chem. Eng. 1 (2) (2020) 82–93. [2] Z.J. Guo, X.C. Cai, J.Y. Xie, X.C. Wang, Y. Zhou, J. Wang, Hydroxyl-exchanged nanoporous ionic copolymer toward low-temperature cycloaddition of atmospheric carbon dioxide into carbonates, ACS Appl. Mater. Interfaces 8 (20) (2016) 12812–12821. [3] C. Calabrese, L.F. Liotta, F. Giacalone, M. Gruttadauria, C. Aprile, Supported polyhedral oligomeric silsesquioxane-based (POSS) materials as highly active organocatalysts for the conversion of CO 2, ChemCatChem 11 (1) (2019) 560–567. [4] J. Li, D.G. Jia, Z.J. Guo, Y.Q. Liu, Y.N. Lyu, Y. Zhou, J. Wang, Imidazolinium based porous hypercrosslinked ionic polymers for efficient CO2 capture and fixation with epoxides, Green Chem. 19 (11) (2017) 2675–2686. [5] Y.Q. Xie, J. Liang, Y.W. Fu, M.T. Huang, X. Xu, H.T. Wang, S. Tu, J. Li, Hypercrosslinked mesoporous poly(ionic liquid)s with high ionic density for efficient CO2 capture and conversion into cyclic carbonates, J. Mater. Chem. A 6 (15) (2018) 6660–6666. [6] T. Biswas, V. Mahalingam, Efficient CO2 fixation under ambient pressure using poly(ionic liquid)-based heterogeneous catalysts, Sustain. Energy Fuels 3 (4) (2019) 935–941. [7] X. Zhang, D. Su, L.F. Xiao, W. Wu, Immobilized protic ionic liquids: efficient catalysts for CO2 fixation with epoxides, J. CO2 Util. 17 (2017) 37–42. [8] W.L. Dai, Y. Zhang, Y. Tan, X.B. Luo, X.M. Tu, Reusable and efficient polymer nanoparticles grafted with hydroxyl-functionalized phosphonium-based ionic liquid catalyst for cycloaddition of CO2 with epoxides, Appl. Catal. A Gen. 514 (2016) 43–50. [9] C.A. Trickett, A. Helal, B.A. Al-Maythalony, Z.H. Yamani, K.E. Cordova, O.M. Yaghi, The chemistry of metal–organic frameworks for CO2 capture, regeneration and conversion, Nat. Rev. Mater. 2 (8) (2017) 17045. [10] Y. Liu, Y.H. Hu, J.S. Zhou, Z.Y. Zhu, Z.K. Zhang, Y.Y. Li, L. Wang, J.L. Zhang, Polystyrene-supported novel imidazolium ionic liquids: highly efficient catalyst for the fixation of carbon dioxide under atmospheric pressure, Fuel 305 (2021) 121495. [11] X.Y. Li, X.M. Liu, J. Liu, L.T. Ren, X.B. Hu, Y.T. Wu, F. Zhang, Z.B. Zhang, The efficient catalytic microsystem with halogen-free catalyst for the intensification on CO2 cycloaddition, Appl. Catal. B Environ. 283 (2021) 119629. [12] Y.L. Chen, P. Xu, M. Arai, J.M. Sun, Cycloaddition of carbon dioxide to epoxides for the synthesis of cyclic carbonates with a mixed catalyst of layered double hydroxide and tetrabutylammonium bromide at ambient temperature, Adv. Synth. Catal. 361 (2) (2019) 335–344. [13] D. Intrieri, C. Damiano, P. Sonzini, E. Gallo, Porphyrin-based homogeneous catalysts for the CO2 cycloaddition to epoxides and aziridines, J. Porphyrins Phthalocyanines 23 (4n05) (2019) 305–328. [14] H.Y. Tong, J. Liang, Q.J. Wu, Y.H. Zou, Y.B. Huang, R. Cao, Soluble imidazolium-functionalized coordination cages for efficient homogeneous catalysis of CO2 cycloaddition reactions, Chem. Commun. 57 (17) (2021) 2140–2143. [15] Y. Liu, Z. Cao, Z. Zhou, A.D. Zhou, Imidazolium-based deep eutectic solvents as multifunctional catalysts for multisite synergistic activation of epoxides and ambient synthesis of cyclic carbonates, J. CO2 Util. 53 (2021) 101717. [16] S. Yue, P.P. Wang, X.Y. Hao, Synthesis of cyclic carbonate from CO2 and epoxide using bifunctional imidazolium ionic liquid under mild conditions, Fuel 251 (2019) 233–241. [17] W. Hui, X.M. He, X.Y. Xu, Y.M. Chen, Y. Zhou, Z.M. Li, L.Q. Zhang, D.J. Tao, Highly efficient cycloaddition of diluted and waste CO2 into cyclic carbonates catalyzed by porous ionic copolymers, J. CO2 Util. 36 (2020) 169–176. [18] W.L. Zhang, F.P. Ma, L. Ma, Y. Zhou, J. Wang, Imidazolium-functionalized ionic hypercrosslinked porous polymers for efficient synthesis of cyclic carbonates from simulated flue gas, ChemSusChem 13 (2) (2020) 341–350. [19] H. Zhang, H. Li, C.C. Xu, S. Yang, Heterogeneously chemo/enzyme-functionalized porous polymeric catalysts of high-performance for efficient biodiesel production, ACS Catal. 9 (12) (2019) 10990–11029. [20] Y.W. Zhang, E.S.M. El-Sayed, K.Z. Su, D.Q. Yuan, Z.B. Han, Facile syntheses of ionic polymers for efficient catalytic conversion of CO2 to cyclic carbonates, J. CO2 Util. 42 (2020) 101301. [21] N. Zhang, B. Zou, G.P. Yang, B. Yu, C.W. Hu, Melamine-based mesoporous organic polymers as metal-Free heterogeneous catalyst: effect of hydroxyl on CO2 capture and conversion, J. CO2 Util. 22 (2017) 9–14. [22] C.Y. Cui, R.J. Sa, Z.X. Hong, H. Zhong, R.H. Wang, Ionic-liquid-modified click-based porous organic polymers for controlling capture and catalytic conversion of CO 2, ChemSusChem 13 (1) (2020) 180–187. [23] Y.L. Wan, Z.M. Zhang, C. Ding, L.L. Wen, Facile construction of bifunctional porous ionic polymers for efficient and metal-free catalytic conversion of CO2 into cyclic carbonates, J. CO2 Util. 52 (2021) 101673. [24] H.B. Song, Y.J. Wang, Y.L. Liu, L. Chen, B.X. Feng, X. Jin, Y. Zhou, T.T. Huang, M. Xiao, F.M. Huang, H.J. Gai, Conferring poly(ionic liquid)s with high surface areas for enhanced catalytic activity, ACS Sustainable Chem. Eng. 9 (5) (2021) 2115–2128. [25] R.C. Luo, Y.J. Chen, Q. He, X.W. Lin, Q.H. Xu, X.H. He, W.Y. Zhang, X.T. Zhou, H.B. Ji, Metallosalen-based ionic porous polymers as bifunctional catalysts for the conversion of CO2 into valuable chemicals, ChemSusChem 10 (7) (2017) 1526–1533. [26] J. Li, Y.L. Han, T. Ji, N.H. Wu, H. Lin, J. Jiang, J.H. Zhu, Porous metallosalen hypercrosslinked ionic polymers for cooperative CO2 cycloaddition conversion, Ind. Eng. Chem. Res. 59 (2) (2020) 676–684. [27] C.K. Ng, R.W. Toh, T.T. Lin, H.K. Luo, T. Hor, J. Wu, Metal-salen molecular cages as efficient and recyclable heterogeneous catalysts for cycloaddition of CO2 with epoxides under ambient conditions, Chem. Sci. 10 (5) (2018) 1549–1554. [28] E.M. Maya, E. Rangel-Rangel, U. Díaz, M. Iglesias, Efficient cycloaddition of CO2 to epoxides using novel heterogeneous organocatalysts based on tetramethylguanidine-functionalized porous polyphenylenes, J. CO2 Util. 25 (2018) 170–179. [29] X.C. Wang, Y. Zhou, Z.J. Guo, G.J. Chen, J. Li, Y.M. Shi, Y.Q. Liu, J. Wang, Heterogeneous conversion of CO2 into cyclic carbonates at ambient pressure catalyzed by ionothermal-derived meso-macroporous hierarchical poly(ionic liquid)S, Chem. Sci. 6 (12) (2015) 6916–6924. [30] J. Peng, H.J. Yang, S. Wang, B.R. Ban, Z.D. Wei, B. Lei, C.Y. Guo, Efficient solvent-free fixation of CO2 catalyzed by new recyclable bifunctional metal complexes, J. CO2 Util. 24 (2018) 1–9. [31] J.W. Lan, Y. Qu, P. Xu, J.M. Sun, Novel HBD-Containing Zn (dobdc) (datz) as efficiently heterogeneous catalyst for CO2 chemical conversion under mild conditions, Green Energy Environ. 6 (1) (2021) 66–74. [32] D. Liu, G. Li, J.X. Liu, Y.H. Yi, Organic-inorganic hybrid mesoporous titanium silica material as bi-functional heterogeneous catalyst for the CO2 cycloaddition, Fuel 244 (2019) 196–206. [33] J. Liu, G.Q. Yang, Y. Liu, D.J. Zhang, X.B. Hu, Z.B. Zhang, Efficient conversion of CO2 into cyclic carbonates at room temperature catalyzed by Al-salen and imidazolium hydrogen carbonate ionic liquids, Green Chem. 22 (14) (2020) 4509–4515. [34] T.X. Zhao, X.B. Hu, D.S. Wu, R. Li, G.Q. Yang, Y.T. Wu, Direct synthesis of dimethyl carbonate from carbon dioxide and methanol at room temperature using imidazolium hydrogen carbonate ionic liquid as a recyclable catalyst and dehydrant, ChemSusChem 10 (9) (2017) 2046–2052. [35] J. Liu, G.Q. Yang, Y. Liu, D.S. Wu, X.B. Hu, Z.B. Zhang, Metal-free imidazolium hydrogen carbonate ionic liquids as bifunctional catalysts for the one-pot synthesis of cyclic carbonates from olefins and CO2, Green Chem. 21 (14) (2019) 3834–3838. [36] A. Dani, E. Groppo, C. Barolo, J.G. Vitillo, S. Bordiga, Design of high surface area poly(ionic liquid)s to convert carbon dioxide into ethylene carbonate, J. Mater. Chem. A 3 (16) (2015) 8508–8518. [37] J. Sun, W.G. Cheng, Z.F. Yang, J.Q. Wang, T.T. Xu, J.Y. Xin, S.J. Zhang, ChemInform abstract: superbase/cellulose: an environmentally benign catalyst for chemical fixation of carbon dioxide into cyclic carbonates, ChemInform 45 (46) (2014) no. [38] Y.D. Zhang, G.J. Chen, L. Wu, K. Liu, H. Zhong, Z.Y. Long, M.M. Tong, Z.Z. Yang, S. Dai, Two-in-one: construction of hydroxyl and imidazolium-bifunctionalized ionic networks in one-pot toward synergistic catalytic CO2 fixation, Chem. Commun. 56 (22) (2020) 3309–3312. [39] L. Zhang, Z.C. Wei, S. Thanneeru, M. Meng, M. Kruzyk, G. Ung, B. Liu, J. He, Frontispiece: a polymer solution to prevent nanoclustering and improve the selectivity of metal nanoparticles for electrocatalytic CO 2 reduction, Angew. Chem. Int. Ed. 58 (44) (2019) anie.201984462. [40] T. Song, J. Deng, L.Y. Deng, L. Bai, X.P. Zhang, S.J. Zhang, P. Szabo, A.E. Daugaard, Poly(vinylimidazole-co-butyl acrylate) membranes for CO2 separation, Polymer 160 (2019) 223–230. [41] H.B. Song, Y.L. Liu, Y.J. Wang, B.X. Feng, X. Jin, T.T. Huang, M. Xiao, H.J. Gai, Design of hypercrosslinked poly(ionic liquid)s for efficiently catalyzing high-selective hydrogenation of phenylacetylene under ambient conditions, Mol. Catal. 493 (2020) 111081. [42] Z.J. Guo, Q.W. Jiang, Y.M. Shi, J. Li, X.N. Yang, W. Hou, Y. Zhou, J. Wang, Tethering dual hydroxyls into mesoporous poly(ionic liquid)s for chemical fixation of CO2 at ambient conditions: a combined experimental and theoretical study, ACS Catal. 7 (10) (2017) 6770–6780. [43] X.C. Wang, Q. Dong, Z.Z. Xu, Y. Wu, D.M. Gao, Y. Xu, C.J. Ye, Y.T. Wen, A.Q. Liu, Z.Y. Long, G.J. Chen, Hierarchically nanoporous copolymer with built-in carbene-CO2 adducts as halogen-free heterogeneous organocatalyst towards cycloaddition of carbon dioxide into carbonates, Chem. Eng. J. 403 (2021) 126460. [44] Y.P. Wang, J.Q. Nie, C.F. Lu, F.Y. Wang, C. Ma, Z.X. Chen, G.C. Yang, Imidazolium-based polymeric ionic liquids for heterogeneous catalytic conversion of CO2 into cyclic carbonates, Microporous Mesoporous Mater. 292 (2020) 109751. [45] Y.F. Sang, J.H. Huang, Benzimidazole-based hyper-cross-linked poly(ionic liquid)s for efficient CO2 capture and conversion, Chem. Eng. J. 385 (2020) 123973. [46] Y.J. Chen, R.C. Luo, Z. Yang, X.T. Zhou, H.B. Ji, Imidazolium-based ionic liquid decorated zinc porphyrin catalyst for converting CO2 into five-membered heterocyclic molecules, Sustain. Energy Fuels 2 (1) (2018) 125–132. [47] Y.T. He, H.M. Lu, X. Li, J. Wu, T.C. Pu, W. Du, H.P. Li, J. Ding, H. Wan, G.F. Guan, Insight into the reversible behavior of Lewis–Brønsted basic poly(ionic liquid)s in one-pot two-step chemical fixation of CO2 to linear carbonates, Green Chem. 23 (21) (2021) 8571–8580. [48] J.W. Zhang, X.P. Li, Z. Zhu, T. Chang, X.Y. Fu, Y.J. Hao, X.C. Meng, B. Panchal, S.J. Qin, Hydroxylamino-anchored poly(ionic liquid)s for CO 2 fixation into cyclic carbonates at mild conditions, Adv. Sustainable Syst. 5 (1) (2021) 2000133. [49] Y. Zhou, W.L. Zhang, L. Ma, Y. Zhou, J. Wang, Amino acid anion paired mesoporous poly(ionic liquids) as metal-/ halogen-free heterogeneous catalysts for carbon dioxide fixation, ACS Sustain. Chem. Eng. 7 (10) (2019) 9387–9398. [50] H.B. Song, Y.J. Wang, M. Xiao, L. Liu, Y.L. Liu, X.F. Liu, H.J. Gai, Design of novel poly(ionic liquids) for the conversion of CO2 to cyclic carbonates under mild conditions without solvent, ACS Sustainable Chem. Eng. 7 (10) (2019) 9489–9497. [51] W. Ying, J.S. Cai, K. Zhou, D.K. Chen, Y.L. Ying, Y. Guo, X.Q. Kong, Z.P. Xu, X.S. Peng, Ionic liquid selectively facilitates CO2 transport through graphene oxide membrane, ACS Nano 12 (6) (2018) 5385–5393. [52] D.G. Jia, L. Ma, Y. Wang, W.L. Zhang, J. Li, Y. Zhou, J. Wang, Efficient CO2 enrichment and fixation by engineering micropores of multifunctional hypercrosslinked ionic polymers, Chem. Eng. J. 390 (2020) 124652. [53] F.D. Bobbink, P.J. Dyson, Synthesis of carbonates and related compounds incorporating CO2 using ionic liquid-type catalysts: state-of-the-art and beyond, J. Catal. 343 (2016) 52–61. |
[1] | Chaojie Li, Xianxin Fang, Meiling Sun, Jihai Duan, Weiwen Wang. Study on two-phase cloud dispersion from liquefied CO2 release [J]. Chinese Journal of Chemical Engineering, 2023, 60(8): 37-45. |
[2] | Xun Tao, Fan Zhou, Xinlei Yu, Songling Guo, Yunfei Gao, Lu Ding, Guangsuo Yu, Zhenghua Dai, Fuchen Wang. Effect of carbon dioxide on oxy-fuel combustion of hydrogen sulfide: An experimental and kinetic modeling [J]. Chinese Journal of Chemical Engineering, 2023, 59(7): 105-117. |
[3] | Guangyuan Chen, Tong Zhou, Meng Zhang, Zhongxiang Ding, Zhikun Zhou, Yuanhui Ji, Haiying Tang, Changsong Wang. Effects of heavy metal ions Cu2+/Pb2+/Zn2+ on kinetic rate constants of struvite crystallization [J]. Chinese Journal of Chemical Engineering, 2023, 57(5): 10-16. |
[4] | Haike Li, Xindong Li, Guozai Ouyang, Lang Li, Zhaohuang Zhong, Meng Cai, Wenhao Li, Wanfu Huang. Tannic acid/Fe3+ interlayer for preparation of high-permeability polyetherimide organic solvent nanofiltration membranes for organic solvent separation [J]. Chinese Journal of Chemical Engineering, 2023, 57(5): 17-29. |
[5] | Yongbo Liu, Zhihao Si, Cong Ren, Hanzhu Wu, Peng Zhan, Yuqing Peng, Peiyong Qin. Ultrathin polyamide nanofiltration membrane prepared by triazine-based porous organic polymer as interlayer for dye removal [J]. Chinese Journal of Chemical Engineering, 2023, 57(5): 193-201. |
[6] | Tatyana P. Adamova, Sergey S. Skiba, Andrey Yu. Manakov, Sergey Y. Misyura. Growth rate of CO2 hydrate film on water–oil and water–gaseous CO2 interface [J]. Chinese Journal of Chemical Engineering, 2023, 56(4): 266-272. |
[7] | Mingdong Sun, Dongxin Pan, Tingting Ye, Jing Gu, Yu Zhou, Jun Wang. Ionic porous polyamide derived N-doped carbon towards highly selective electroreduction of CO2 [J]. Chinese Journal of Chemical Engineering, 2023, 55(3): 212-221. |
[8] | Mengge Shang, Jing Zhang, Jinqiang Sun, Shimo Yu, Feng Hua, Xiaoxu Xuan, Xun Sun, Serguei Filatov, Xibin Yi. Amine-functionalized mesoporous UiO-66 aerogel for CO2 adsorption [J]. Chinese Journal of Chemical Engineering, 2023, 54(2): 36-43. |
[9] | Xianglin Liu, Minjie Xu, Chenxi Cao, Zixu Yang, Jing Xu. Effects of zinc on χ-Fe5C2 for carbon dioxide hydrogenation to olefins: Insights from experimental and density function theory calculations [J]. Chinese Journal of Chemical Engineering, 2023, 54(2): 206-214. |
[10] | Zhongyao Zhang, Ming Gao, Xiaopeng Chen, Xiaojie Wei, Jiezhen Liang, Chenghong Wu, Linlin Wang. The Joule–Thomson effect of (CO2 + H2) binary system relevant to gas switching reforming with carbon capture and storage (CCS) [J]. Chinese Journal of Chemical Engineering, 2023, 54(2): 215-231. |
[11] | Vladimir S. Derevschikov, Janna V. Veselovskaya, Anton S. Shalygin, Dmitry A. Yatsenko, Andrey Z. Sheshkovas, Oleg N. Martyanov. Operating limits and features of direct air capture on K2CO3/ZrO2 composite sorbent [J]. Chinese Journal of Chemical Engineering, 2022, 46(6): 11-20. |
[12] | Xingzheng Liu, Chuanbo Fu, Manting Wang, Jiexin Wang, Haikui Zou, Yuan Le, Jianfeng Chen. High-gravity technology intensified Knoevenagel condensation-Michael addition polymerization of poly (ethylene glycol)-poly (n-butyl cyanoacrylate) for blood-brain barrier delivery [J]. Chinese Journal of Chemical Engineering, 2022, 46(6): 94-103. |
[13] | Jipeng Dong, Fei Wang, Guanghui Chen, Shougui Wang, Cailin Ji, Fei Gao. Fabrication of nickel oxide functionalized zeolite USY composite as a promising adsorbent for CO2 capture [J]. Chinese Journal of Chemical Engineering, 2022, 46(6): 207-213. |
[14] | Zongyao Zhou, Zhen Li, Lubna M. Rehman, Zhiping Lai. Conjugated microporous polymer membranes for chemical separations [J]. Chinese Journal of Chemical Engineering, 2022, 45(5): 1-14. |
[15] | Jing Dou, Shuo Han, Saisai Lin, Zhikan Yao, Lian Hou, Lin Zhang. Highly permeable reverse osmosis membranes incorporated with hydrophilic polymers of intrinsic microporosity via interfacial polymerization [J]. Chinese Journal of Chemical Engineering, 2022, 45(5): 194-202. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||