[1] Y. Wang, K.S. Chen, J. Mishler, S.C. Cho, X.C. Adroher, A review of polymer electrolyte membrane fuel cells: Technology, applications, and needs on fundamental research, Applied Energy, 88 (2011) 981-1007. [2] J. Zhao, X. Li, A review of polymer electrolyte membrane fuel cell durability for vehicular applications: Degradation modes and experimental techniques, Energy Convers. Manage., 199 (2019) 112022. [3] X. Zhang, Y.P. Yang, X.Y. Zhang, H.T. Liu, Identification of performance degradations in catalyst layer and gas diffusion layer in proton exchange membrane fuel cells, J. Power Sources 449 (2020) 227580. [4] L. Placca, R. Kouta, Fault tree analysis for PEM fuel cell degradation process modelling, Int. J. Hydrog. Energy 36 (19) (2011) 12393–12405. [5] K. Panha, M. Fowler, X.Z. Yuan, H.J. Wang, Accelerated durability testing via reactants relative humidity cycling on PEM fuel cells, Appl. Energy 93 (2012) 90–97. [6] J.F. Wu, X.Z. Yuan, J.J. Martin, H.J. Wang, D.J. Yang, J.L. Qiao, J.X. Ma, Proton exchange membrane fuel cell degradation under close to open-circuit conditions: Part I: in situ diagnosis, J. Power Sources 195 (4) (2010) 1171–1176. [7] Q.W. Tang, B. Li, D.J. Yang, P.W. Ming, C.M. Zhang, Y.B. Wang, Review of hydrogen crossover through the polymer electrolyte membrane, Int. J. Hydrog. Energy 46 (42) (2021) 22040–22061. [8] P. Ren, P.C. Pei, Y.H. Li, Z.Y. Wu, D.F. Chen, S.W. Huang, Degradation mechanisms of proton exchange membrane fuel cell under typical automotive operating conditions, Prog. Energy Combust. Sci. 80 (2020) 100859. [9] H.L. Haijiang Wang, X.-Z. Yuan, PEM Fuel Cell Failure Mode Analysis, CRC Press Boca Raton, FL,USA, 2012. [10] V.A. Sethuraman, J.W. Weidner, A.T. Haug, L.V. Protsailo, Durability of perfluorosulfonic acid and hydrocarbon membranes: Effect of humidity and temperature, J. Electrochem. Soc. 155 (2) (2008) B119. [11] X.Y. Huang, R. Solasi, Y. Zou, M. Feshler, K. Reifsnider, D. Condit, S. Burlatsky, T. Madden, Mechanical endurance of polymer electrolyte membrane and PEM fuel cell durability, J. Polym. Sci. B Polym. Phys. 44 (16) (2006) 2346–2357. [12] J. Xie, D.L. Wood, D.M. Wayne, T.A. Zawodzinski, P. Atanassov, R.L. Borup, Durability of PEFCs at high humidity conditions, J. Electrochem. Soc. 152 (1) (2005) A104. [13] C. Chen, T.F. Fuller, The effect of humidity on the degradation of Nafion® membrane, Polym. Degrad. Stab. 94 (9) (2009) 1436–1447. [14] D. Garcia-Sanchez, T. Morawietz, P.G. da Rocha, R. Hiesgen, P. Gazdzicki, K.A. Friedrich, Local impact of load cycling on degradation in polymer electrolyte fuel cells, Appl. Energy 259 (2020) 114210. [15] J. Kwon, S. Jo, K.Y. Cho, K. Eom, Deconvolution of the dehydration degradation mechanism in polymer electrolyte membrane fuel cells using electrochemical impedance analysis combined with the transmission line model under low humidity, J. Power Sources 473 (2020) 228587. [16] E. Endoh, S. Terazono, H. Widjaja, Y. Takimoto, Degradation Study of MEA for PEMFCs under Low Humidity Conditions, Electrochem. Solid-State Lett., 7 (2004) A209. [17] A. Kusoglu, A.M. Karlsson, M.H. Santare, S. Cleghorn, W.B. Johnson, Mechanical behavior of fuel cell membranes under humidity cycles and effect of swelling anisotropy on the fatigue stresses, J. Power Sources, 170 (2007) 345-358. [18] Y.L. Tang, A.M. Karlsson, M.H. Santare, M. Gilbert, S. Cleghorn, W.B. Johnson, An experimental investigation of humidity and temperature effects on the mechanical properties of perfluorosulfonic acid membrane, Mater. Sci. Eng. A 425 (1–2) (2006) 297–304. [19] Z. Lu, M. Lugo, M.H. Santare, A.M. Karlsson, F.C. Busby, P. Walsh, An experimental investigation of strain rate, temperature and humidity effects on the mechanical behavior of a perfluorosulfonic acid membrane, J. Power Sources, 214 (2012) 130-136. [20] A. Kusoglu, M.H. Santare, A.M. Karlsson, Aspects of fatigue failure mechanisms in polymer fuel cell membranes, J. Polym. Sci., Part B: Polym. Phys., 49 (2011) 1506-1517. [21] S.S. Zhang, X.Z. Yuan, J.N.C. Hin, H.J. Wang, K.A. Friedrich, M. Schulze, A review of platinum-based catalyst layer degradation in proton exchange membrane fuel cells, J. Power Sources 194 (2) (2009) 588–600. [22] R. Sharma, S.M. Andersen, Quantification on degradation mechanisms of polymer electrolyte membrane fuel cell catalyst layers during an accelerated stress test, ACS Catal. 8 (4) (2018) 3424–3434. [23] R. Sharma, S.M. Andersen, An opinion on catalyst degradation mechanisms during catalyst support focused accelerated stress test (AST) for proton exchange membrane fuel cells (PEMFCs), Appl. Catal. B Environ. 239 (2018) 636–643. [24] R. Borup, J. Meyers, B. Pivovar, Y.S. Kim, R. Mukundan, N. Garland, D. Myers, M. Wilson, F. Garzon, D. Wood, P. Zelenay, K. More, K. Stroh, T. Zawodzinski, J. Boncella, J.E. McGrath, M. Inaba, K. Miyatake, M. Hori, K. Ota, Z. Ogumi, S. Miyata, A. Nishikata, Z. Siroma, Y. Uchimoto, K. Yasuda, K.I. Kimijima, N. Iwashita, Scientific aspects of polymer electrolyte fuel cell durability and degradation, Chem. Rev. 107 (10) (2007) 3904–3951. [25] C. Takei, K. Kakinuma, K. Kawashima, K. Tashiro, M. Watanabe, M. Uchida, Load cycle durability of a graphitized carbon black-supported platinum catalyst in polymer electrolyte fuel cell cathodes, J. Power Sources 324 (2016) 729–737. [26] K. Yu, D.J. Groom, X.P. Wang, Z.W. Yang, M. Gummalla, S.C. Ball, D.J. Myers, P.J. Ferreira, Degradation mechanisms of platinum nanoparticle catalysts in proton exchange membrane fuel cells: The role of particle size, Chem. Mater. 26 (19) (2014) 5540–5548. [27] A.A. Topalov, S. Cherevko, A.R. Zeradjanin, J.C. Meier, I. Katsounaros, K.J.J. Mayrhofer, Towards a comprehensive understanding of platinum dissolution in acidic media, Chem. Sci. 5 (2) (2014) 631–638. [28] K. Khedekar, M. Rezaei Talarposhti, M.M. Besli, S. Kuppan, A. Perego, Y.C. Chen, M. Metzger, S. Stewart, P. Atanassov, N. Tamura, N. Craig, L. Cheng, C.M. Johnston, I.V. Zenyuk, Probing heterogeneous degradation of catalyst in PEM fuel cells under realistic automotive conditions with multi-modal techniques, Adv. Energy Mater. 11 (35) (2021) 2101794. [29] J. Zhao, S. Shahgaldi, X.G. Li, Z.S. Liu, Experimental observations of microstructure changes in the catalyst layers of proton exchange membrane fuel cells under wet-dry cycles, J. Electrochem. Soc. 165 (6) (2018) F3337–F3345. [30] F. Rong, C. Huang, Z.S. Liu, D.T. Song, Q.P. Wang, Microstructure changes in the catalyst layers of PEM fuel cells induced by load cycling: Part II. Simulation and understanding, J. Power Sources 175 (2) (2008) 712–723. [31] S.V. Venkatesan, M. Dutta, E. Kjeang, Mesoscopic degradation effects of voltage cycled cathode catalyst layers in polymer electrolyte fuel cells, Electrochem. Commun. 72 (2016) 15–18. [32] J. Kwon, P. Choi, K. Eom, A comparison study on the carbon corrosion reaction under saturated and low relative humidity conditions via transmission line model-based electrochemical impedance analysis, J. Electrochem. Soc., 168 (2021) 064515. [33] D.G. Sanchez, T. Ruiu, I. Biswas, M. Schulze, S. Helmly, K.A. Friedrich, Local impact of humidification on degradation in polymer electrolyte fuel cells, J. Power Sources 352 (2017) 42–55. [34] H.C. Chen, Z. Song, X. Zhao, T. Zhang, P.C. Pei, C. Liang, A review of durability test protocols of the proton exchange membrane fuel cells for vehicle, Appl. Energy 224 (2018) 289–299. [35] J. Kurtz, Fuel cell technology status: Degradation, DOE hydrogen and fuelcells program, in: 2017 Annual Merit Review Proceedings, Washington, D.C., 2019. [36] S.M. Andersen, L. Grahl-Madsen, Interface contribution to the electrode performance of proton exchange membrane fuel cells - Impact of the ionomer, Int. J. Hydrog. Energy 41 (3) (2016) 1892–1901. [37] O. Reid, F.S. Saleh, E.B. Easton, Determining electrochemically active surface area in PEM fuel cell electrodes with electrochemical impedance spectroscopy and its application to catalyst durability, Electrochimica Acta 114 (2013) 278–284. [38] A.V. Virkar, Y. Zhou, Mechanism of catalyst degradation in proton exchange membrane fuel cells, J. Electrochem. Soc., 154 (2007) B540. [39] W. Bi, Q.H. Sun, Y.L. Deng, T.F. Fuller, The effect of humidity and oxygen partial pressure on degradation of Pt/C catalyst in PEM fuel cell, Electrochimica Acta 54 (6) (2009) 1826–1833. [40] C. Lim, L. Ghassemzadeh, F.V. Hove, M. Lauritzen, J. Kolodziej, G.G. Wang, S. Holdcroft, E. Kjeang, Membrane degradation during combined chemical and mechanical accelerated stress testing of polymer electrolyte fuel cells, J. Power Sources 257 (2014) 102–110. [41] P.C. Pei, H.C. Xu, X. Zeng, H.S. Zha, M.C. Song, Use of galvanostatic charge method as a membrane electrode assembly diagnostic tool in a fuel cell stack, J. Power Sources 245 (2014) 175–182. [42] S. Kundu, M. Fowler, L.C. Simon, R. Abouatallah, Reversible and irreversible degradation in fuel cells during Open Circuit Voltage durability testing, J. Power Sources 182 (1) (2008) 254–258. [43] L. Ghassemzadeh, T.J. Peckham, T. Weissbach, X.Y. Luo, S. Holdcroft, Selective formation of hydrogen and hydroxyl radicals by electron beam irradiation and their reactivity with perfluorosulfonated acid ionomer, J. Am. Chem. Soc. 135 (42) (2013) 15923–15932. [44] L. Ghassemzadeh, S. Holdcroft, Quantifying the structural changes of perfluorosulfonated acid ionomer upon reaction with hydroxyl radicals, J. Am. Chem. Soc. 135 (22) (2013) 8181–8184. |