Chinese Journal of Chemical Engineering ›› 2023, Vol. 56 ›› Issue (4): 273-280.DOI: 10.1016/j.cjche.2022.07.012
Previous Articles Next Articles
Xingzhong Li, Kunlin Yu, Zibo He, Bo Liu, Rongfei Zhou, Weihong Xing
Received:
2022-04-10
Revised:
2022-07-12
Online:
2023-06-13
Published:
2023-04-28
Contact:
Bo Liu,E-mail:liu@njtech.edu.cn;Rongfei Zhou,E-mail:rf-zhou@njtech.edu.cn
Supported by:
Xingzhong Li, Kunlin Yu, Zibo He, Bo Liu, Rongfei Zhou, Weihong Xing
通讯作者:
Bo Liu,E-mail:liu@njtech.edu.cn;Rongfei Zhou,E-mail:rf-zhou@njtech.edu.cn
基金资助:
Xingzhong Li, Kunlin Yu, Zibo He, Bo Liu, Rongfei Zhou, Weihong Xing. Improved SSZ-13 thin membranes fabricated by seeded-gel approach for efficient CO2 capture[J]. Chinese Journal of Chemical Engineering, 2023, 56(4): 273-280.
Xingzhong Li, Kunlin Yu, Zibo He, Bo Liu, Rongfei Zhou, Weihong Xing. Improved SSZ-13 thin membranes fabricated by seeded-gel approach for efficient CO2 capture[J]. 中国化学工程学报, 2023, 56(4): 273-280.
Add to citation manager EndNote|Ris|BibTeX
URL: https://cjche.cip.com.cn/EN/10.1016/j.cjche.2022.07.012
[1] A. Brunetti, F. Scura, G. Barbieri, E. Drioli, Membrane technologies for CO2 separation, J. Membr. Sci. 359 (1–2) (2010) 115–125. [2] V. Martin-Gil, M.Z. Ahmad, R. Castro-Muñoz, V. Fila, Economic framework of membrane technologies for natural gas applications, Sep. Purif. Rev. 48 (4) (2019) 298–324. [3] L. Peters, A. Hussain, M. Follmann, T. Melin, M.B. Hägg, CO2 removal from natural gas by employing amine absorption and membrane technology—A technical and economical analysis, Chem. Eng. J. 172 (2–3) (2011) 952–960. [4] R.W. Baker, K. Lokhandwala, Natural gas processing with membranes: An overview, Ind. Eng. Chem. Res. 47 (7) (2008) 2109–2121. [5] C.W. Zhang, M.L. Sheng, Y.Q. Hu, Y. Yuan, Y.L. Kang, X. Sun, T. Wang, Q.H. Li, X.S. Zhao, Z. Wang, Efficient facilitated transport polymer membrane for CO2/CH4 separation from oilfield associated gas, Membranes 11 (2) (2021) 118. [6] G. George, N. Bhoria, S. AlHallaq, A. Abdala, V. Mittal, Polymer membranes for acid gas removal from natural gas, Sep. Purif. Technol. 158 (2016) 333–356. [7] Y. Han, W.S.W. Ho, Polymeric membranes for CO2 separation and capture, J. Membr. Sci. 628 (2021) 119244. [8] J. Okazaki, H. Hasegawa, N. Chikamatsu, K. Yajima, K. Shimizu, M. Niino, DDR-type zeolite membrane: A novel CO2 separation technology for enhanced oil recovery, Sep. Purif. Technol. 218 (2019) 200–205. [9] R.F. Zhou, E.W. Ping, H.H. Funke, J.L. Falconer, R.D. Noble, Improving SAPO-34 membrane synthesis, J. Membr. Sci. 444 (2013) 384–393. [10] T. Wu, B. Wang, Z.H. Lu, R.F. Zhou, X.S. Chen, Alumina-supported AlPO-18 membranes for CO2/CH4 separation, J. Membr. Sci. 471 (2014) 338–346. [11] S.G. Li, C.Q. Fan, High-flux SAPO-34 membrane for CO2/N2 separation, Ind. Eng. Chem. Res. 49 (9) (2010) 4399–4404. [12] N. Kosinov, C. Auffret, C. Gücüyener, B.M. Szyja, J. Gascon, F. Kapteijn, E.J.M. Hensen, High flux high-silica SSZ-13 membrane for CO2separation, J. Mater. Chem. A 2 (32) (2014) 13083–13092. [13] H. Kalipcilar, T.C. Bowen, R.D. Noble, J.L. Falconer, Synthesis and separation performance of SSZ-13 zeolite membranes on tubular supports, Chem. Mater. 14 (8) (2002) 3458–3464. [14] J.H. Shin, H.J. Yu, H. An, A.S. Lee, S.S. Hwang, S.Y. Lee, J.S. Lee, Rigid double-stranded siloxane-induced high-flux carbon molecular sieve hollow fiber membranes for CO2/CH4 separation, J. Membr. Sci. 570-571 (2019) 504–512. [15] S. Haider, A. Lindbråthen, J.A. Lie, I.C.T. Andersen, M.B. Hägg, CO2 separation with carbon membranes in high pressure and elevated temperature applications, Sep. Purif. Technol. 190 (2018) 177–189. [16] H.H. Tseng, P.T. Shiu, Y.S. Lin, Effect of mesoporous silica modification on the structure of hybrid carbon membrane for hydrogen separation, Int. J. Hydrog. Energy 36 (23) (2011) 15352–15363. [17] D.Q. Vu, W.J. Koros, S.J. Miller, High pressure CO2/CH4 separation using carbon molecular sieve hollow fiber membranes, Ind. Eng. Chem. Res. 41 (3) (2002) 367–380. [18] Z.B. Rui, J.B. James, A. Kasik, Y.S. Lin, Metal–organic framework membrane process for high purity CO2 production, AIChE J. 62 (11) (2016) 3836–3841. [19] Y.H. Wang, H. Jin, Q. Ma, K. Mo, H.Z. Mao, A. Feldhoff, X.Z. Cao, Y.S. Li, F.S. Pan, Z.Y. Jiang, A MOF glass membrane for gas separation, Angew. Chem. Int. Ed Engl. 59 (11) (2020) 4365–4369. [20] T. Lee, J. Choi, M. Tsapatsis, On the performance of c-oriented MFI zeolite membranes treated by rapid thermal processing, J. Membr. Sci. 436 (2013) 79–89. [21] Y. Liu, M.R. Li, Z.G. Chen, Y. Cui, J.M. Lu, Y. Liu, Hierarchy control of MFI zeolite membrane towards superior butane isomer separation performance, Angew. Chem. Int. Ed. 60 (14) (2021) 7659–7663. [22] J.A. Stoeger, J. Choi, M. Tsapatsis, Rapid thermal processing and separation performance of columnar MFI membranes on porous stainless steel tubes, Energy Environ. Sci. 4 (9) (2011) 3479–3486. [23] K. Varoon, X.Y. Zhang, B. Elyassi, D.D. Brewer, M. Gettel, S. Kumar, J.A. Lee, S. Maheshwari, A. Mittal, C.Y. Sung, M. Cococcioni, L.F. Francis, A.V. McCormick, K.A. Mkhoyan, M. Tsapatsis, Dispersible exfoliated zeolite nanosheets and their application as a selective membrane, Science 334 (6052) (2011) 72–75. [24] N. Kosinov, E.J.M. Hensen, Synthesis and separation properties of an α-alumina-supported high-silica MEL membrane, J. Membr. Sci. 447 (2013) 12–18. [25] V. Nikolakis, G. Xomeritakis, A. Abibi, M. Dickson, M. Tsapatsis, D.G. Vlachos, Growth of a faujasite-type zeolite membrane and its application in the separation of saturated/unsaturated hydrocarbon mixtures, J. Membr. Sci. 184 (2) (2001) 209–219. [26] E. Jang, S. Hong, E. Kim, N. Choi, S.J. Cho, J. Choi, Organic template-free synthesis of high-quality CHA type zeolite membranes for carbon dioxide separation, J. Membr. Sci. 549 (2018) 46–59. [27] S.W. Yang, Y.D. Chiang, S. Nair, Scalable one-step gel conversion route to high-performance CHA zeolite hollow fiber membranes and modules for CO2 separation, Energy Technol. 7 (9) (2019) 1900494. [28] X. Kong, H.E. Qiu, D.N. Meng, X.X. Tang, S.L. Yang, W.Y. Guo, Y. Zhang, L. Kong, Y.F. Zhang, Z.F. Zhang, Reproducible synthesis of all-silica CHA zeolite membranes in a homogeneous mother liquor, Sep. Purif. Technol. 274 (2021) 119104. [29] S.C. Song, F. Gao, Y. Zhang, X.P. Li, M. Zhou, B. Wang, R.F. Zhou, Preparation of SSZ-13 membranes with enhanced fluxes using asymmetric alumina supports for N2/CH4 and CO2/CH4 separations, Sep. Purif. Technol. 209 (2019) 946–954. [30] E. Kim, S. Hong, E. Jang, J.H. Lee, J.C. Kim, N. Choi, C.H. Cho, J. Nam, S.K. Kwak, A.C.K. Yip, J. Choi, An oriented, siliceous deca-dodecasil 3R (DDR) zeolite film for effective carbon capture: Insight into its hydrophobic effect, J. Mater. Chem. A 5 (22) (2017) 11246–11254. [31] N.M. Nguyen, Q.T. le, D.P.H. Nguyen, T.N. Nguyen, T.T. le, T.C.T. Pham, Facile synthesis of seed crystals and gelless growth of pure silica DDR zeolite membrane on low cost silica support for high performance in CO2 separation, J. Membr. Sci. 624 (2021) 119110. [32] L. Wang, C. Zhang, X.C. Gao, L. Peng, J. Jiang, X.H. Gu, Preparation of defect-free DDR zeolite membranes by eliminating template with ozone at low temperature, J. Membr. Sci. 539 (2017) 152–160. [33] S.L. Zhong, N. Bu, R.F. Zhou, W.Q. Jin, M. Yu, S.G. Li, Aluminophosphate-17 and silicoaluminophosphate-17 membranes for CO2 separations, J. Membr. Sci. 520 (2016) 507–514. [34] B. Wang, F. Gao, F. Zhang, W.H. Xing, R.F. Zhou, Highly permeable and oriented AlPO-18 membranes prepared using directly synthesized nanosheets for CO2/CH4 separation, J. Mater. Chem. A 7 (21) (2019) 13164–13172. [35] B. Wang, N. Hu, H.M. Wang, Y.H. Zheng, R.F. Zhou, Improved AlPO-18 membranes for light gas separation, J. Mater. Chem. A 3 (23) (2015) 12205–12212. [36] M. Sen, K. Dana, N. Das, Development of LTA zeolite membrane from clay by sonication assisted method at room temperature for H2-CO2 and CO2-CH4 separation, Ultrason. Sonochem. 48 (2018) 299–310. [37] R.U. Rehman, Q.N. Song, L. Peng, Y. Chen, X.H. Gu, Hydrophobic modification of SAPO-34 membranes for improvement of stability under wet condition, Chin. J. Chem. Eng. 27 (10) (2019) 2397–2406. [38] J.C. Poshusta, R.D. Noble, J.L. Falconer, Characterization of SAPO-34 membranes by water adsorption, J. Membr. Sci. 186 (1) (2001) 25–40. [39] M. Lee, S. Hong, D. Kim, E. Kim, K. Lim, J.C. Jung, H. Richter, J.H. Moon, N. Choi, J. Nam, J. Choi, Chabazite-type zeolite membranes for effective CO2 separation: The role of hydrophobicity and defect structure, ACS Appl. Mater. Interfaces 11 (4) (2019) 3946–3960. [40] J.J. Zhou, F. Gao, K. Sun, X.Y. Jin, Y. Zhang, B. Liu, R.F. Zhou, Green synthesis of highly CO2-selective CHA zeolite membranes in all-silica and fluoride-free solution for CO2/CH4 separations, Energy Fuels 34 (9) (2020) 11307–11314. [41] D.N. Meng, X. Kong, X.X. Tang, W.Y. Guo, S.L. Yang, Y. Zhang, H.E. Qiu, Y.F. Zhang, Z.F. Zhang, Thin SAPO-34 zeolite membranes prepared by ball-milled seeds, Sep. Purif. Technol. 274 (2021) 118975. [42] R.U. Rehman, Q.N. Song, L. Peng, Z.Q. Wu, X.H. Gu, A facile coating to intact SAPO-34 membranes for wet CO2/CH4 mixture separation, Chem. Eng. Res. Des. 153 (2020) 37–48. [43] B. Liu, R.F. Zhou, K. Yogo, H. Kita, Preparation of CHA zeolite (chabazite) crystals and membranes without organic structural directing agents for CO2 separation, J. Membr. Sci. 573 (2019) 333–343. [44] P. Karakiliç, X.R. Wang, F. Kapteijn, A. Nijmeijer, L. Winnubst, Defect-free high-silica CHA zeolite membranes with high selectivity for light gas separation, J. Membr. Sci. 586 (2019) 34–43. [45] S. Araki, Y. Okubo, K. Maekawa, S. Imasaka, H. Yamamoto, Preparation of a high-silica chabazite-type zeolite membrane with high CO2 permeability using tetraethylammonium hydroxide, J. Membr. Sci. 613 (2020) 118480. [46] L. Yu, A. Holmgren, M. Zhou, J. Hedlund, Highly permeable CHA membranes prepared by fluoride synthesis for efficient CO2/CH4 separation, J. Mater. Chem. A 6 (16) (2018) 6847–6853. [47] S. Araki, R. Yamashita, K. Li, H. Yamamoto, Preparation and gas permeation properties of all-silica CHA zeolite hollow fiber membranes prepared on amorphous-silica hollow fibers, J. Membr. Sci. 634 (2021) 119338. [48] G.G.D.S. Figueiredo, D. Takayama, K. Ishii, M. Nomura, T. Onoki, T. Okuno, H. Tawarayama, S. Ishikawa, Development of pure silica CHA membranes for CO2 separation, Membranes 11 (12) (2021) 926. [49] N. Kosinov, C. Auffret, G.J. Borghuis, V.G.P. Sripathi, E.J.M. Hensen, Influence of the Si/Al ratio on the separation properties of SSZ-13 zeolite membranes, J. Membr. Sci. 484 (2015) 140–145. [50] X.R. Wang, T. Zhou, P. Zhang, W.F. Yan, Y.G. Li, L. Peng, D. Veerman, M.Y. Shi, X.H. Gu, F. Kapteijn, High-silica CHA zeolite membrane with ultra-high selectivity and irradiation stability for krypton/xenon separation, Angew. Chem. Int. Ed. 60 (16) (2021) 9032–9037. [51] L. Yu, M.S. Nobandegani, A. Holmgren, J. Hedlund, Highly permeable and selective tubular zeolite CHA membranes, J. Membr. Sci. 588 (2019) 117224. [52] L. Yu, M.S. Nobandegani, J. Hedlund, Industrially relevant CHA membranes for CO2/CH4 separation, J. Membr. Sci. 641 (2022) 119888. [53] S.W. Yang, Y.H. Kwon, D.Y. Koh, B. Min, Y.J. Liu, S. Nair, Highly selective SSZ-13 zeolite hollow fiber membranes by ultraviolet activation at near-ambient temperature, ChemNanoMat 5 (1) (2019) 61–67. [54] X.X. Tang, Y. Zhang, D.N. Meng, X. Kong, L. Kong, H.E. Qiu, N. Xu, W.Y. Guo, S.L. Yang, Y.F. Zhang, Efficient synthesis of thin SSZ-13 membranes by gel-less method, J. Membr. Sci. 620 (2021) 118920. [55] X.X. Tang, Y. Zhang, D.N. Meng, X. Kong, S.L. Yang, W.Y. Guo, H.E. Qiu, L. Kong, Y.F. Zhang, Z.F. Zhang, Fast synthesis of thin SSZ-13 membranes by a hot-dipping method, J. Membr. Sci. 629 (2021) 119297. [56] J. Kim, E. Jang, S. Hong, D. Kim, E. Kim, H. Ricther, A. Simon, N. Choi, D. Korelskiy, S. Fouladvand, J. Nam, J. Choi, Microstructural control of a SSZ-13 zeolite film via rapid thermal processing, J. Membr. Sci. 591 (2019) 117342. [57] Y.M. Li, Y.L. Wang, M.Y. Guo, B. Liu, R.F. Zhou, Z.P. Lai, High-performance 7-channel monolith supported SSZ-13 membranes for high-pressure CO2/CH4 separations, J. Membr. Sci. 629 (2021) 119277. [58] X.P. Li, Y.W. Wang, T.Y. Wu, S.C. Song, B. Wang, S.L. Zhong, R.F. Zhou, High-performance SSZ-13 membranes prepared using ball-milled nanosized seeds for carbon dioxide and nitrogen separations from methane, Chin. J. Chem. Eng. 28 (5) (2020) 1285–1292. [59] Y.M. Li, S.N. He, C.J. Shu, X.P. Li, B. Liu, R.F. Zhou, Z.P. Lai, A facile approach to synthesize SSZ-13 membranes with ultrahigh N2 permeances for efficient N2/CH4 separations, J. Membr. Sci. 632 (2021) 119349. [60] S.J. Wu, X.P. Li, B. Liu, B. Wang, R.F. Zhou, An effective approach to synthesize high-performance SSZ-13 membranes using the steam-assisted conversion method for N2/CH4 separation, Energy Fuels 34 (12) (2020) 16502–16511. [61] B. Wang, Y.H. Zheng, J.F. Zhang, W.J. Zhang, F. Zhang, W.H. Xing, R.F. Zhou, Separation of light gas mixtures using zeolite SSZ-13 membranes, Microporous Mesoporous Mater. 275 (2019) 191–199. [62] Y.H. Zheng, N. Hu, H.M. Wang, N. Bu, F. Zhang, R.F. Zhou, Preparation of steam-stable high-silica CHA (SSZ-13) membranes for CO2/CH4 and C2H4/C2H6 separation, J. Membr. Sci. 475 (2015) 303–310. [63] M.R. Hudson, W.L. Queen, J.A. Mason, D.W. Fickel, R.F. Lobo, C.M. Brown, Unconventional, highly selective CO2 adsorption in zeolite SSZ-13, J. Am. Chem. Soc. 134 (4) (2012) 1970–1973. [64] A. Aydani, A. Brunetti, H. Maghsoudi, G. Barbieri, CO2 separation from binary mixtures of CH4, N2, and H2 by using SSZ-13 zeolite membrane, Sep. Purif. Technol. 256 (2021) 117796. [65] Y. Chen, Y.T. Zhang, C. Zhang, J. Jiang, X.H. Gu, Fabrication of high-flux SAPO-34 membrane on α-Al2O3 four-channel hollow fibers for CO2 capture from CH4, J. CO2 Util. 18 (2017) 30–40. [66] S.G. Li, J.L. Falconer, R.D. Noble, SAPO-34 membranes for CO2/CH4 separation, J. Membr. Sci. 241 (1) (2004) 121–135. [67] H.E. Qiu, Y. Zhang, L. Kong, X. Kong, X.X. Tang, D.N. Meng, N. Xu, M.Q. Wang, Y.F. Zhang, High performance SSZ-13 membranes prepared at low temperature, J. Membr. Sci. 603 (2020) 118023. [68] T. Gui, X.P. Chen, M.H. Zhu, X.G. An, H.L. Wang, T. Wu, F. Zhang, X.S. Chen, H. Kita, Gas separation performance of SSZ-13 zeolite membranes on different supports, Energy Fuels 35 (18) (2021) 14852–14859. [69] B. Liu, R.F. Zhou, N. Bu, Q. Wang, S.L. Zhong, B. Wang, K. Hidetoshi, Room-temperature ionic liquids modified zeolite SSZ-13 membranes for CO2/CH4 separation, J. Membr. Sci. 524 (2017) 12–19. [70] H.L. Wang, M.H. Zhu, T. Wu, Q.L. Jiang, F. Zhang, Y.F. Wu, X.S. Chen, Template removal and surface modification of an SSZ-13 membrane with heated sodium chloride for CO2/CH4 gas separation, ACS Omega 7 (8) (2022) 6721–6727. [71] K. Kida, Y. Maeta, K. Yogo, Preparation and gas permeation properties on pure silica CHA-type zeolite membranes, J. Membr. Sci. 522 (2017) 363–370. [72] L. Yu, A. Holmgren, J. Hedlund, A novel method for fabrication of high-flux zeolite membranes on supports with arbitrary geometry, J. Mater. Chem. A 7 (17) (2019) 10325–10330. [73] N. Xu, Z.H. Liu, Y. Zhang, H.E. Qiu, L. Kong, X.X. Tang, D.N. Meng, X. Kong, M.Q. Wang, Y.F. Zhang, Fast synthesis of thin all-silica DDR zeolite membranes by co-template strategy, Microporous Mesoporous Mater. 298 (2020) 110091. [74] M.Q. Wang, L. Bai, M. Li, L.Y. Gao, M.X. Wang, P.H. Rao, Y.F. Zhang, Ultrafast synthesis of thin all-silica DDR zeolite membranes by microwave heating, J. Membr. Sci. 572 (2019) 567–579. [75] Y. Hasegawa, C. Abe, M. Natsui, A. Ikeda, Gas permeation properties of high-silica CHA-type zeolite membrane, Membranes 11 (4) (2021) 249. [76] M. Lee, Y. Jeong, S. Hong, J. Choi, High performance CO2-perm-selective SSZ-13 membranes: Elucidation of the link between membrane material and module properties, J. Membr. Sci. 611 (2020) 118390. [77] E. Kim, T. Lee, H. Kim, W.J. Jung, D.Y. Han, H. Baik, N. Choi, J. Choi, Chemical vapor deposition on chabazite (CHA) zeolite membranes for effective post-combustion CO2 capture, Environ. Sci. Technol. 48 (24) (2014) 14828–14836. [78] S.R. Venna, M.A. Carreon, Amino-functionalized SAPO-34 membranes for CO2/CH4 and CO2/N2 separation, Langmuir 27 (6) (2011) 2888–2894. |
[1] | Jian Wang, Yuanhui Shen, Donghui Zhang, Zhongli Tang, Wenbin Li. Integrated vacuum pressure swing adsorption and Rectisol process for CO2 capture from underground coal gasification syngas [J]. Chinese Journal of Chemical Engineering, 2023, 57(5): 265-279. |
[2] | Zhengchi Yin, Xiaoke Wu, Yanwei Yang, Huayu Zhang, Wangtao Li, Ruimin Zhu, Qiancheng Zheng, Zhengbao Wang. Fabrication of ZIF-8 membranes on dual-layer ZnO-PES/PES organic hollow fibers by in-situ crystallization [J]. Chinese Journal of Chemical Engineering, 2023, 55(3): 101-110. |
[3] | Zhong Ma, Guofu Liu, Hui Zhang, Yonggang Lu. Investigation of the redox performance of pyrite cinder calcined at different temperature in chemical looping combustion [J]. Chinese Journal of Chemical Engineering, 2022, 48(8): 98-105. |
[4] | Xin Yong, Hong Chen, Huawang Zhao, Miao Wei, Yingnan Zhao, Yongdan Li. Insight into SO2 poisoning and regeneration of one-pot synthesized Cu-SSZ-13 catalyst for selective reduction of NOx by NH3 [J]. Chinese Journal of Chemical Engineering, 2022, 46(6): 184-193. |
[5] | Huawang Zhao, Xiaomin Wu, Zhiwei Huang, Ziyi Chen, Guohua Jing. A comparative study of the thermal and hydrothermal aging effect on Cu-SSZ-13 for the selective catalytic reduction of NOx with NH3 [J]. Chinese Journal of Chemical Engineering, 2022, 45(5): 68-77. |
[6] | Ding-Ming Xue, Wen-Juan Zhang, Xiao-Qin Liu, Shi-Chao Qi, Lin-Bing Sun. Fabrication of azobenzene-functionalized porous polymers for selective CO2 capture [J]. Chinese Journal of Chemical Engineering, 2022, 43(3): 24-30. |
[7] | Xiaobin Chen, Yuting Tang, Chuncheng Ke, Chaoyue Zhang, Sichun Ding, Xiaoqian Ma. CO2 capture by double metal modified CaO-based sorbents from pyrolysis gases [J]. Chinese Journal of Chemical Engineering, 2022, 43(3): 40-49. |
[8] | Wanqiao Liang, Jihuan Huang, Penny Xiao, Ranjeet Singh, Jining Guo, Leila Dehdari, Gang Kevin Li. Amine-immobilized HY zeolite for CO2 capture from hot flue gas [J]. Chinese Journal of Chemical Engineering, 2022, 43(3): 335-342. |
[9] | Xiuxin Yu, Bing Liu, Yuanhui Shen, Donghui Zhang. Design and experiment of high-productivity two-stage vacuum pressure swing adsorption process for carbon capturing from dry flue gas [J]. Chinese Journal of Chemical Engineering, 2022, 43(3): 378-391. |
[10] | Xionghui Liu, Jianfeng Du, Yu Ye, Yuchuan Liu, Shun Wang, Xianyu Meng, Xiaowei Song, Zhiqiang Liang, Wenfu Yan. Boosting selective C2H2/CH4, C2H4/CH4 and CO2/CH4 adsorption performance via 1,2,3-triazole functionalized triazine-based porous organic polymers [J]. Chinese Journal of Chemical Engineering, 2022, 42(2): 64-72. |
[11] | Jiajia Wang, Lizhi Wang, You Wang, Du Zhang, Qin Xiao, Jianhan Huang, You-Nian Liu. Recent progress in porous organic polymers and their application for CO2 capture [J]. Chinese Journal of Chemical Engineering, 2022, 42(2): 91-103. |
[12] | Peng Tan, Yao Jiang, Qiurong Wu, Chen Gu, Shichao Qi, Qiang Zhang, Xiaoqin Liu, Linbing Sun. Light-responsive adsorbents with tunable adsorbent-adsorbate interactions for selective CO2 capture [J]. Chinese Journal of Chemical Engineering, 2022, 42(2): 104-111. |
[13] | Baowen Wang, Zhongyuan Cai, Heyu Li, Yanchen Liang, Tao Jiang, Ning Ding, Haibo Zhao. Reaction characteristics investigation of CeO2-enhanced CaSO4 oxygen carrier with lignite [J]. Chinese Journal of Chemical Engineering, 2022, 42(2): 319-328. |
[14] | Tao Jiang, Fei Xiao, Yujun Zhao, Shengping Wang, Xinbin Ma. High-temperature CO2 sorbents with citrate and stearate intercalated Ca—Al hydrotalcite-like as precursor [J]. Chinese Journal of Chemical Engineering, 2022, 50(10): 177-184. |
[15] | Ben Liu, Nangui Lv, Chan Wang, Hongwei Zhang, Yuanyuan Yue, Jingdong Xu, Xiaotao Bi, Xiaojun Bao. Redistributing Cu species in Cu-SSZ-13 zeolite as NH3-SCR catalyst via a simple ion-exchange [J]. Chinese Journal of Chemical Engineering, 2022, 41(1): 329-341. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||