Chinese Journal of Chemical Engineering ›› 2023, Vol. 57 ›› Issue (5): 162-172.DOI: 10.1016/j.cjche.2022.08.021
Previous Articles Next Articles
Yaqiao Liu1, Shuozhen Hu1, Xinsheng Zhang1, Shigang Sun2
Received:
2022-04-26
Revised:
2022-07-31
Online:
2023-07-08
Published:
2023-05-28
Contact:
Shuozhen Hu,E-mail:shuozhen.hu@ecust.edu.cn;Shigang Sun,E-mail:sgsun@xmu.edu.cn
Supported by:
Yaqiao Liu1, Shuozhen Hu1, Xinsheng Zhang1, Shigang Sun2
通讯作者:
Shuozhen Hu,E-mail:shuozhen.hu@ecust.edu.cn;Shigang Sun,E-mail:sgsun@xmu.edu.cn
基金资助:
Yaqiao Liu, Shuozhen Hu, Xinsheng Zhang, Shigang Sun. Investigation of photoelectrocatalytic degradation mechanism of methylene blue by α-Fe2O3 nanorods array[J]. Chinese Journal of Chemical Engineering, 2023, 57(5): 162-172.
Yaqiao Liu, Shuozhen Hu, Xinsheng Zhang, Shigang Sun. Investigation of photoelectrocatalytic degradation mechanism of methylene blue by α-Fe2O3 nanorods array[J]. 中国化学工程学报, 2023, 57(5): 162-172.
Add to citation manager EndNote|Ris|BibTeX
URL: https://cjche.cip.com.cn/EN/10.1016/j.cjche.2022.08.021
[1] E. Brillas, C.A. Martínez-Huitle, Decontamination of wastewaters containing synthetic organic dyes by electrochemical methods. An updated review, Appl. Catal. B Environ. 166-167 (2015) 603–643. http://dx.doi.org/10.1016/j.apcatb.2014.11.016 [2] J.L. Wang, H. Chen, Catalytic ozonation for water and wastewater treatment: Recent advances and perspective, Sci. Total Environ. 704 (2020) 135249. https://pubmed.ncbi.nlm.nih.gov/31837842/ [3] J. Gomes, R. Costa, R.M. Quinta-Ferreira, R.C. Martins, Application of ozonation for pharmaceuticals and personal care products removal from water, Sci. Total Environ. 586 (2017) 265–283. https://pubmed.ncbi.nlm.nih.gov/28185729/ [4] M. Solis, A. Solis, H.I. Perez, N. Manjarrez, M. Flores, Microbial decolouration of azo dyes: A review, Process Biochem., 47 (2012) 1723-1748. [5] M. Hu, X.H. Wang, X.H. Wen, Y. Xia, Microbial community structures in different wastewater treatment plants as revealed by 454-pyrosequencing analysis, Bioresour. Technol. 117 (2012) 72–79. https://pubmed.ncbi.nlm.nih.gov/22609716/ [6] S. Vasudevan, M.A. Oturan, Electrochemistry: As cause and cure in water pollution—an overview, Environ. Chem. Lett. 12 (1) (2014) 97–108. http://dx.doi.org/10.1007/s10311-013-0434-2 [7] A. Babuponnusami, K. Muthukumar, Advanced oxidation of phenol: A comparison between Fenton, electro-Fenton, sono-electro-Fenton and photo-electro-Fenton processes, Chem. Eng. J. 183 (2012) 1–9. http://dx.doi.org/10.1016/j.cej.2011.12.010 [8] I. Sirés, E. Brillas, M.A. Oturan, M.A. Rodrigo, M. Panizza, Electrochemical advanced oxidation processes: Today and tomorrow. A review, Environ. Sci. Pollut. Res. Int. 21 (14) (2014) 8336–8367. https://pubmed.ncbi.nlm.nih.gov/24687788/ [9] S.K. Loeb, P.J.J. Alvarez, J.A. Brame, E.L. Cates, W. Choi, J. Crittenden, D.D. Dionysiou, Q.L. Li, G. Li-Puma, X. Quan, D.L. Sedlak, T. David Waite, P. Westerhoff, J.H. Kim, The technology horizon for photocatalytic water treatment: Sunrise or sunset? Environ. Sci. Technol. 53 (6) (2019) 2937–2947. https://doi.org/10.1021/acs.est.8b05041 [10] L. Zhao, J.H. Deng, P.Z. Sun, J.S. Liu, Y. Ji, N. Nakada, Z. Qiao, H. Tanaka, Y.K. Yang, Nanomaterials for treating emerging contaminants in water by adsorption and photocatalysis: Systematic review and bibliometric analysis, Sci. Total. Environ. 627 (2018) 1253–1263. http://dx.doi.org/10.1016/j.scitotenv.2018.02.006 [11] Ihsanullah, Carbon nanotube membranes for water purification: Developments, challenges, and prospects for the future, Sep. Purif. Technol. 209 (2019) 307–337. http://dx.doi.org/10.1016/j.seppur.2018.07.043 [12] S. Kohansal, M. Haghighi, M. Zarrabi, Intensification of Bi7O9I3 nanoparticles distribution on ZnO via ultrasound induction approach used in photocatalytic water treatment under solar light irradiation, Chem. Eng. Sci. 230 (2021) 116086. http://dx.doi.org/10.1016/j.ces.2020.116086 [13] C.G. Lee, H. Javed, D.N. Zhang, J.H. Kim, P. Westerhoff, Q.L. Li, P.J.J. Alvarez, Porous electrospun fibers embedding TiO2 for adsorption and photocatalytic degradation of water pollutants, Environ. Sci. Technol. 52 (7) (2018) 4285–4293. https://doi.org/10.1021/acs.est.7b06508 [14] S. Garcia-Segura, E. Brillas, Applied photoelectrocatalysis on the degradation of organic pollutants in wastewaters, J. Photochem. Photobiol. C Photochem. Rev. 31 (2017) 1–35. http://dx.doi.org/10.1016/j.jphotochemrev.2017.01.005 [15] T. Wang, C.-A. Lin, S. Xu, C.-F. Wang, C.P. Huang, Toward concurrent organics removal and potential hydrogen production in wastewater treatment: photoelectrochemical decolorization of methylene blue over hematite electrode in the presence of Mn(II), Appl. Catal. B: E, 244 (2018) 140-149. [16] G. Matafonova, V. Batoev, Recent advances in application of UV light-emitting diodes for degrading organic pollutants in water through advanced oxidation processes: A review, Water Res. 132 (2018) 177–189. https://pubmed.ncbi.nlm.nih.gov/29331640/ [17] M. Poornajar, N.T. Nguyen, H.-J. Ahn, M. Büchler, N. Liu, S. Kment, R. Zboril, J.E. Yoo, P. Schmuki, Fe2O3 blocking layer produced by cyclic voltammetry leads to improved photoelectrochemical performance of hematite nanorods, Surfaces, 2 (2019) 131-144. [18] J.S. Nyarige, T.P.J. Krüger, M. Diale, Structural and optical properties of hematite and L-arginine/hematite nanostructures prepared by thermal spray pyrolysis, Surf. Interfaces 18 (2020) 100394. http://dx.doi.org/10.1016/j.surfin.2019.100394 [19] W.R.W. Ahmad, M.H. Mamat, A.S. Zoolfakar, Z. Khusaimi, M. Rusop, A review on hematite α-Fe2O3 focusing on nanostructures, synthesis methods and applications. In: 2016 IEEE Student Conference on Research and Development (SCOReD), Kuala Kumpur, Malaysia, 2017. [20] C. Venkata Reddy, I.N. Reddy, B. Akkinepally, K.R. Reddy, J. Shim, Synthesis and photoelectrochemical water oxidation of (Y, Cu) codoped α-Fe2O3 nanostructure photoanode, J. Alloys Compd., 814 (2020) 152349. [21] H.J. Ahn, K.Y. Yoon, M.J. Kwak, J. Park, J.H. Jang, Boron doping of metal-doped hematite for reduced surface recombination in water splitting, ACS Catal. 8 (12) (2018) 11932–11939. https://doi.org/10.1021/acscatal.8b03184 [22] F. Xiao, R.Q. Guo, X. He, H. Chen, W. Fang, W.X. Li, H.L. Wang, Z.M. Sun, P. Tian, L. Zhao, Enhanced photocurrent by MOFs layer on Ti-doped α-Fe2O3 for PEC water oxidation, Int. J. Hydrog. Energy 46 (11) (2021) 7954–7963. http://dx.doi.org/10.1016/j.ijhydene.2020.12.023 [23] B. Lei, D.D. Xu, B. Wei, T.F. Xie, C.Y. Xiao, W.L. Jin, L.L. Xu, In situ synthesis of α-Fe2O3/Fe3O4 heterojunction photoanode via fast flame annealing for enhanced charge separation and water oxidation, ACS Appl. Mater. Interfaces 13 (3) (2021) 4785–4795. https://doi.org/10.1021/acsami.0c19927 [24] D. Chen, Z.F. Liu, S.C. Zhang, Enhanced PEC performance of hematite photoanode coupled with bimetallic oxyhydroxide NiFeOOH through a simple electroless method, Appl. Catal. B Environ. 265 (2020) 118580. http://dx.doi.org/10.1016/j.apcatb.2019.118580 [25] S. Balu, S. Velmurugan, S. Palanisamy, S.W. Chen, V. Velusamy, T.C.K. Yang, E.S.I. El-Shafey, Synthesis of α-Fe2O3 decorated g-C3N4/ZnO ternary Z-scheme photocatalyst for degradation of tartrazine dye in aqueous media, J. Taiwan Inst. Chem. Eng. 99 (2019) 258–267. http://dx.doi.org/10.1016/j.jtice.2019.03.011 [26] R. Chalasani, S. Vasudevan, Cyclodextrin-functionalized Fe3O4@TiO2: Reusable, magnetic nanoparticles for photocatalytic degradation of endocrine-disrupting chemicals in water supplies, ACS Nano 7 (5) (2013) 4093–4104. https://pubmed.ncbi.nlm.nih.gov/23600646/ [27] Y.H. Chen, C.C. Lin, Effect of nano-hematite morphology on photocatalytic activity, Phys. Chem. Miner. 41 (10) (2014) 727–736. http://dx.doi.org/10.1007/s00269-014-0686-9 [28] Y.G. Lin, Y.K. Hsu, Y.C. Lin, Y.C. Chen, Electrodeposited Fe2TiO5 nanostructures for photoelectrochemical oxidation of water, Electrochimica Acta 213 (2016) 898–903. http://dx.doi.org/10.1016/j.electacta.2016.07.143 [29] Y. Hanedar, U. Demir, T. Oznuluer, Electrochemical synthesis and photoelectrochemical properties of grass-like nanostructured α-Fe2O3 photoanodes for use in solar water oxidation, Superlattices Microstruct. 98 (2016) 371–378. http://dx.doi.org/10.1016/j.spmi.2016.08.041 [30] S. Balu, Y.L. Chen, R.C. Juang, T.C.K. Yang, J.C. Juan, Morphology-controlled synthesis of α-Fe2O3 nanocrystals impregnated on g-C3N4-SO3H with ultrafast charge separation for photoreduction of Cr (VI) under visible light, Environ. Pollut. 267 (2020) 115491. http://dx.doi.org/10.1016/j.envpol.2020.115491 [31] N.T. Hahn, H. Ye, D.W. Flaherty, A.J. Bard, C.B. Mullins, Reactive ballistic deposition of α-Fe2O3 thin films for photoelectrochemical water oxidation, ACS Nano 4 (4) (2010) 1977–1986. https://doi.org/10.1021/nn100032y [32] X.S. Zhang, H.C. Li, S.J. Wang, F.R.F. Fan, A.J. Bard, Improvement of hematite as photocatalyst by doping with tantalum, J. Phys. Chem. C 118 (30) (2014) 16842–16850. https://doi.org/10.1021/jp500395a [33] C.C. Li, Z.B. Luo, T. Wang, J.L. Gong, Surface, bulk, and interface: Rational design of hematite architecture toward efficient photo-electrochemical water splitting, Adv. Mater. 30 (30) (2018) e1707502. https://pubmed.ncbi.nlm.nih.gov/29750372/ [34] R.V. Morris, H.V. Lauer Jr, C.A. Lawson, E.K. Gibson Jr, G.A. Nace, C. Stewart, Spectral and other physicochemical properties of submicron powders of hematite (α-Fe2O3), maghemite (γ-Fe2O3), magnetite (Fe3O4), goethite (α-FeOOH), and lepidocrocite (γ-FeOOH), J. Geophys. Res. 90 (B4) (1985) 3126. https://doi.org/10.1029/jb090ib04p03126 [35] H. Choi, H. Ryu, W.J. Lee, Photoelectrochemical properties of Fe2O3 nanorods grown with an Na2SO4 additive, J. Ind. Eng. Chem. 63 (2018) 41–47. http://dx.doi.org/10.1016/j.jiec.2018.01.036 [36] I.S. Cho, H.S. Han, M. Logar, J. Park, X.L. Zheng, Solar water splitting: Enhancing low-bias performance of hematite photoanodes for solar water splitting by simultaneous reduction of bulk, interface, and surface recombination pathways (adv. energy mater. 4/2016), Adv. Energy Mater. 6 (4) (2016) 1501840. https://doi.org/10.1002/aenm.201670021 [37] X.L. Guo, L.L. Wang, Y.W. Tan, Hematite nanorods Co-doped with Ru cations with different valence states as high performance photoanodes for water splitting, Nano Energy 16 (2015) 320–328. http://dx.doi.org/10.1016/j.nanoen.2015.07.005 [38] M. Vanags, A. Šutka, J. Kleperis, P. Shipkovs, Comparison of the electrochemical properties of hematite thin films prepared by spray pyrolysis and electrodeposition, Ceram. Int. 41 (7) (2015) 9024–9029. http://dx.doi.org/10.1016/j.ceramint.2015.03.272 [39] H.Q. Ma, J.B. Hwang, W.S. Chae, H.S. Chung, S.H. Choi, M.A. Mahadik, H.H. Lee, J.S. Jang, Magnetron sputtering strategy for Zr-Fe2O3 nanorod photoanode fabricated from ZrOx/β-FeOOH nanorods for photoelectrochemical water splitting, Appl. Surf. Sci. 549 (2021) 149233. http://dx.doi.org/10.1016/j.apsusc.2021.149233 [40] X.L. Yu, J.Q. Liu, W.C. Yin, T. Wang, L. Quan, Y. Ran, J.Y. Cui, L. Wang, Y.H. Zhang, Ultrathin NiMn-layered double hydroxide nanosheets coupled with α-Fe2O3 nanorod arrays for photoelectrochemical water splitting, Appl. Surf. Sci. 492 (2019) 264–271. http://dx.doi.org/10.1016/j.apsusc.2019.06.162 [41] G.D. Zhou, T. Zhao, O.M. Wang, X. Xia, J.H. Pan, Bi2Se3, Bi2Te3 quantum dots-sensitized rutile TiO2 nanorod arrays for enhanced solar photoelectrocatalysis in azo dye degradation, J. Phys. Energy 3 (1) (2021) 014003. https://doi.org/10.1088/2515-7655/abc52c [42] P. Kar, P. Jain, V. Kumar, R.K. Gupta, Interfacial engineering of Fe2O3@BOC heterojunction for efficient detoxification of toxic metal and dye under visible light illumination, J. Environ. Chem. Eng. 7 (1) (2019) 102843. http://dx.doi.org/10.1016/j.jece.2018.102843 [43] Y.Z. Hong, Y.H. Jiang, C.S. Li, W.Q. Fan, X. Yan, M. Yan, W.D. Shi, In-situ synthesis of direct solid-state Z-scheme V2O5/g-C3N4 heterojunctions with enhanced visible light efficiency in photocatalytic degradation of pollutants, Appl. Catal. B Environ. 180 (2016) 663–673. http://dx.doi.org/10.1016/j.apcatb.2015.06.057 [44] M.M. Khan, S.A. Ansari, D. Pradhan, M.O. Ansari, D.H. Han, J. Lee, M.H. Cho, Band gap engineered TiO2nanoparticles for visible light induced photoelectrochemical and photocatalytic studies, J. Mater. Chem. A 2 (3) (2014) 637–644. https://doi.org/10.1039/c3ta14052k [45] S. Sharma, S. Singh, N. Khare, Enhanced photosensitization of zinc oxide nanorods using polyaniline for efficient photocatalytic and photoelectrochemical water splitting, Int. J. Hydrog. Energy 41 (46) (2016) 21088–21098. http://dx.doi.org/10.1016/j.ijhydene.2016.08.131 [46] S.S. Patil, M.G. Mali, M.S. Tamboli, D.R. Patil, M.V. Kulkarni, H. Yoon, H. Kim, S.S. Al-Deyab, S.S. Yoon, S.S. Kolekar, B.B. Kale, Green approach for hierarchical nanostructured Ag-ZnO and their photocatalytic performance under sunlight, Catal. Today 260 (2016) 126–134. http://dx.doi.org/10.1016/j.cattod.2015.06.004 [47] Y.Y. Sheng, J. Yang, F. Wang, L.C. Liu, H. Liu, C. Yan, Z.H. Guo, Sol-gel synthesized hexagonal boron nitride/titania nanocomposites with enhanced photocatalytic activity, Appl. Surf. Sci. 465 (2019) 154–163. http://dx.doi.org/10.1016/j.apsusc.2018.09.137 [48] S. Rajendran, M.M. Khan, F. Gracia, J.Q. Qin, V.K. Gupta, S. Arumainathan, Ce3+-ion-induced visible-light photocatalytic degradation and electrochemical activity of ZnO/CeO2 nanocomposite, Sci. Rep. 6 (2016) 31641. https://doi.org/10.1038/srep31641 [49] L. Liu, Y.H. Qi, J.R. Lu, S.L. Lin, W.J. An, Y.H. Liang, W.Q. Cui, A stable Ag3PO4@g-C3N4 hybrid core@shell composite with enhanced visible light photocatalytic degradation, Appl. Catal. B Environ. 183 (2016) 133–141. http://dx.doi.org/10.1016/j.apcatb.2015.10.035 [50] L. Zhang, W. Yu, C. Han, J. Guo, Q.H. Zhang, H.Y. Xie, Q. Shao, Z.G. Sun, Z.H. Guo, Large scaled synthesis of heterostructured electrospun TiO2/SnO2Nanofibers with an enhanced photocatalytic activity, J. Electrochem. Soc. 164 (9) (2017) H651–H656. https://doi.org/10.1149/2.1531709jes [51] C.N. Tang, E.Z. Liu, J. Wan, X.Y. Hu, J. Fan, Co3O4 nanoparticles decorated Ag3PO4 tetrapods as an efficient visible-light-driven heterojunction photocatalyst, Appl. Catal. B Environ. 181 (2016) 707–715. http://dx.doi.org/10.1016/j.apcatb.2015.08.045 [52] X. Liu, A.L. Jin, Y.S. Jia, T.L. Xia, C.X. Deng, M.H. Zhu, C.F. Chen, X.S. Chen, Synergy of adsorption and visible-light photocatalytic degradation of methylene blue by a bifunctional Z-scheme heterojunction of WO3/g-C3N4, Appl. Surf. Sci. 405 (2017) 359–371. http://dx.doi.org/10.1016/j.apsusc.2017.02.025 [53] W.X. Zou, L. Zhang, L.C. Liu, X.B. Wang, J.F. Sun, S.G. Wu, Y. Deng, C.J. Tang, F. Gao, L. Dong, Engineering the Cu2O-reduced graphene oxide interface to enhance photocatalytic degradation of organic pollutants under visible light, Appl. Catal. B Environ. 181 (2016) 495–503. http://dx.doi.org/10.1016/j.apcatb.2015.08.017 [54] L.V. Trandafilović, D.J. Jovanović, X. Zhang, S. Ptasińska, M.D. Dramićanin, Enhanced photocatalytic degradation of methylene blue and methyl orange by ZnO: Eu nanoparticles, Appl. Catal. B Environ. 203 (2017) 740–752. http://dx.doi.org/10.1016/j.apcatb.2016.10.063 [55] H. Jiang, L. Liu, K. Zhao, Z. Liu, X.S. Zhang, S.Z. Hu, Effect of pyridinic- and pyrrolic-nitrogen on electrochemical performance of Pd for formic acid electrooxidation, Electrochimica Acta 337 (2020) 135758. http://dx.doi.org/10.1016/j.electacta.2020.135758 [56] Y.N. Zhang, H. Xu, D.F. Niu, X.S. Zhang, Y.Y. Zhang, Pyridine grafted on SnO 2-loaded carbon nanotubes acting as cocatalyst for highly efficient electroreduction of CO 2, ChemSusChem 14 (13) (2021) 2769–2779. https://doi.org/10.1002/cssc.202100541 [57] C. Ma, P.F. Hou, X.P. Wang, Z. Wang, W.T. Li, P. Kang, Carbon nanotubes with rich pyridinic nitrogen for gas phase CO2 electroreduction, Appl. Catal. B Environ. 250 (2019) 347–354. http://dx.doi.org/10.1016/j.apcatb.2019.03.041 [58] H. Jin, X.K. Tian, Y.L. Nie, Z.X. Zhou, C. Yang, Y. Li, L.Q. Lu, Oxygen vacancy promoted heterogeneous Fenton-like degradation of ofloxacin at pH 3.2–9.0 by Cu substituted magnetic Fe3O4@FeOOH nanocomposite, Environ. Sci. Technol. 51 (21) (2017) 12699–12706. https://doi.org/10.1021/acs.est.7b04503 [59] L. Wang, K. Marcus, X.J. Huang, Z.Q. Shen, Y. Yang, Y.P. Bi, Retraction: Dual effects of nanostructuring and oxygen vacancy on photoelectrochemical water oxidation activity of superstructured and defective hematite nanorods, Small 15 (5) (2019) 1970008. https://doi.org/10.1002/smll.201704464 [60] Y.X. Zhu, J. Xu, H. Jiang, D.F. Niu, X.S. Zhang, S.Z. Hu, The effect of fluorine doping on the photocatalytic properties of hematite for water splitting, CrystEngComm 20 (41) (2018) 6430–6437. https://doi.org/10.1039/c8ce01368c [61] M.T. Nguyen, S. Piccinin, N. Seriani, R. Gebauer, Photo-oxidation of water on defective hematite(0001), ACS Catal. 5 (2) (2015) 715–721. https://doi.org/10.1021/cs5017326 [62] J. Yang, S. Hu, Y. Fang, S. Hoang, Y. Guo, Oxygen Vacancy Promoted O2 Activation over Perovskite Oxide for Low-Temperature CO Oxidation, ACS Catal., 9 (2019) 9751-9763. [63] G.Q. Shen, R.R. Zhang, L. Pan, F. Hou, Y.J. Zhao, Z.Y. Shen, W.B. Mi, C.X. Shi, Q.F. Wang, X.W. Zhang, J.J. Zou, Regulating the spin state of Fe III by atomically anchoring on ultrathin titanium dioxide for efficient oxygen evolution electrocatalysis, Angew. Chem. Int. Ed. 59 (6) (2020) 2313–2317. https://doi.org/10.1002/anie.201913080 [64] Z.H. Zhou, J. Liu, R. Long, L.Q. Li, L.J. Guo, O.V. Prezhdo, Control of charge carriers trapping and relaxation in hematite by oxygen vacancy charge: Ab initio non-adiabatic molecular dynamics, J. Am. Chem. Soc. 139 (19) (2017) 6707–6717. https://doi.org/10.1021/jacs.7b02121 [65] M.R. Zong, D. Song, X. Zhang, X.P. Huang, X.C. Lu, K.M. Rosso, Facet-dependent photodegradation of methylene blue by hematite nanoplates in visible light, Environ. Sci. Technol. 55 (1) (2021) 677–688. https://pubmed.ncbi.nlm.nih.gov/33351596/ [66] J.S. Hu, J. Li, J.F. Cui, W.J. An, L. Liu, Y.H. Liang, W.Q. Cui, Surface oxygen vacancies enriched FeOOH/Bi2MoO6 photocatalysis- Fenton synergy degradation of organic pollutants, J. Hazard. Mater. 384 (2020) 121399. http://dx.doi.org/10.1016/j.jhazmat.2019.121399 [67] Z.H. Wang, W.H. Ma, C.C. Chen, H.W. Ji, J.C. Zhao, Probing paramagnetic species in titania-based heterogeneous photocatalysis by electron spin resonance (ESR) spectroscopy—A mini review, Chem. Eng. J. 170 (2–3) (2011) 353–362. http://dx.doi.org/10.1016/j.cej.2010.12.002 [68] L.W. Chen, S.J. Yang, Y. Huang, B.G. Zhang, F.X. Kang, D.H. Ding, T.M. Cai, Degradation of antibiotics in multi-component systems with novel ternary AgBr/Ag3PO4@natural hematite heterojunction photocatalyst under simulated solar light, J. Hazard. Mater. 371 (2019) 566–575. http://dx.doi.org/10.1016/j.jhazmat.2019.03.038 [69] Y.C. Ling, G.M. Wang, J. Reddy, C.C. Wang, J.Z. Zhang, Y. Li, The influence of oxygen content on the thermal activation of hematite nanowires, Angew. Chem. Int. Ed. 51 (17) (2012) 4074–4079. https://doi.org/10.1002/anie.201107467 [70] N. Meshram, M.A. Mahadik, I.K. Jeong, Y.S. Seo, M. Cho, J.S. Jang, Effect of tetravalent ions dopants and CoOx surface modification on hematite nanorod array for photoelectrochemical degradation of Orange-II dye, J. Taiwan Inst. Chem. Eng. 97 (2019) 305–315. http://dx.doi.org/10.1016/j.jtice.2019.02.025 [71] A. Gómez-Marín, J. Feliu, T. Edson, Reaction mechanism for oxygen reduction on platinum: Existence of a fast initial chemical step and a soluble species different from H2O2, ACS Catal. 8 (9) (2018) 7931–7943. https://doi.org/10.1021/acscatal.8b01291 [72] J. Herranz, A. Garsuch, H.A. Gasteiger, Using rotating ring disc electrode voltammetry to quantify the superoxide radical stability of aprotic Li–air battery electrolytes, J. Phys. Chem. C 116 (36) (2012) 19084–19094. https://doi.org/10.1021/jp304277z [73] A. Guleria, R. Sharma, A. Singh, N.K. Upadhyay, P. Shandilya, Direct dual-Z-scheme PANI/Ag2O/Cu2O heterojunction with broad absorption range for photocatalytic degradation of methylene blue, J. Water Process. Eng. 43 (2021) 102305. http://dx.doi.org/10.1016/j.jwpe.2021.102305 [74] A.S. Bansode, S.E. More, E.A. Siddiqui, S. Satpute, A. Ahmad, S.V. Bhoraskar, V.L. Mathe, Effective degradation of organic water pollutants by atmospheric non-thermal plasma torch and analysis of degradation process, Chemosphere 167 (2017) 396–405. http://dx.doi.org/10.1016/j.chemosphere.2016.09.089 [75] Y.W. Qiu, X.Y. Xu, Z.B. Xu, J. Liang, Y.L. Yu, X.D. Cao, Contribution of different iron species in the iron-biochar composites to sorption and degradation of two dyes with varying properties, Chem. Eng. J. 389 (2020) 124471. http://dx.doi.org/10.1016/j.cej.2020.124471 [76] C. Liu, H.H. Lü, C.L. Yu, B. Ding, R.X. Ye, Y.L. Ji, B. Dai, W.M. Liu, Novel FeWO4/WO3 nanoplate with p-n heterostructure and its enhanced mechanism for organic pollutants removal under visible-light illumination, J. Environ. Chem. Eng. 8 (5) (2020) 104044. http://dx.doi.org/10.1016/j.jece.2020.104044 [77] S.M. Chaudhari, P.M. Gawal, P.K. Sane, S.M. Sontakke, P.R. Nemade, Solar light-assisted photocatalytic degradation of methylene blue with Mo/TiO2: A comparison with Cr- and Ni-doped TiO2, Res. Chem. Intermed. 44 (5) (2018) 3115–3134. http://dx.doi.org/10.1007/s11164-018-3296-1 [78] D. Saha, M.M. Desipio, T.J. Hoinkis, E.J. Smeltz, R. Thorpe, D.K. Hensley, S.G. Fischer-Drowos, J.H. Chen, Influence of hydrogen peroxide in enhancing photocatalytic activity of carbon nitride under visible light: An insight into reaction intermediates, J. Environ. Chem. Eng. 6 (4) (2018) 4927–4936. http://dx.doi.org/10.1016/j.jece.2018.07.030 |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||