Chinese Journal of Chemical Engineering ›› 2023, Vol. 57 ›› Issue (5): 183-192.DOI: 10.1016/j.cjche.2022.09.011
Previous Articles Next Articles
Shichao Tian, Yuming Tu, Rujie Li, Yufan Du, Zhiyong Zhou, Fan Zhang, Zhongqi Ren
Received:
2022-06-05
Revised:
2022-08-28
Online:
2023-07-08
Published:
2023-05-28
Contact:
Zhongqi Ren,E-mail:renzq@mail.buct.edu.cn
Supported by:
Shichao Tian, Yuming Tu, Rujie Li, Yufan Du, Zhiyong Zhou, Fan Zhang, Zhongqi Ren
通讯作者:
Zhongqi Ren,E-mail:renzq@mail.buct.edu.cn
基金资助:
Shichao Tian, Yuming Tu, Rujie Li, Yufan Du, Zhiyong Zhou, Fan Zhang, Zhongqi Ren. Comprehensive treatment of latex wastewater and resource utilization of concentrated liquid[J]. Chinese Journal of Chemical Engineering, 2023, 57(5): 183-192.
Shichao Tian, Yuming Tu, Rujie Li, Yufan Du, Zhiyong Zhou, Fan Zhang, Zhongqi Ren. Comprehensive treatment of latex wastewater and resource utilization of concentrated liquid[J]. 中国化学工程学报, 2023, 57(5): 183-192.
Add to citation manager EndNote|Ris|BibTeX
URL: https://cjche.cip.com.cn/EN/10.1016/j.cjche.2022.09.011
[1] D. Tanikawa, T. Kataoka, H. Sonaka, Y. Hirakata, M. Hatamoto, T. Yamaguchi, Evaluation of key factors for residual rubber coagulation in natural rubber processing wastewater, J. Water Process. Eng. 33 (2020) 101041.Doi: 10.1016/j.jwpe.2019.101041 [2] T.D. Kusworo, A.C. Kumoro, D.P. Utomo, F.M. Kusumah, M.D. Pratiwi, Performance of the crosslinked PVA coated PES-TiO2 nano hybrid membrane for the treatment of pretreated natural rubber wastewater involving sequential adsorption - ozonation processes, J. Environ. Chem. Eng. 9 (2) (2021) 104855.Doi: 10.1016/j.jece.2020.104855 [3] A. Abdelrasoul, H. Doan, A. Lohi, C.H. Cheng, The influence of aggregation of latex particles on membrane fouling attachments & ultrafiltration performance in ultrafiltration of latex contaminated water and wastewater, J. Environ. Sci. (China) 52 (2017) 118–129.https://pubmed.ncbi.nlm.nih.gov/28254030/ [4] P. Dunuwila, V.H.L. Rodrigo, N. Goto, Improving financial and environmental sustainability in concentrated latex manufacture, J. Clean. Prod. 255 (2020) 120202.Doi: 10.1016/j.jclepro.2020.120202 [5] M. Wawrzkiewicz, P. Bartczak, T. Jesionowski, Enhanced removal of hazardous dye form aqueous solutions and real textile wastewater using bifunctional chitin/lignin biosorbent, Int. J. Biol. Macromol. 99 (2017) 754–764.https://pubmed.ncbi.nlm.nih.gov/28283458/ [6] T. Watari, T.C. Mai, D. Tanikawa, Y. Hirakata, M. Hatamoto, K. Syutsubo, M. Fukuda, N.B. Nguyen, T. Yamaguchi, Performance evaluation of the pilot scale upflow anaerobic sludge blanket - Downflow hanging sponge system for natural rubber processing wastewater treatment in South Vietnam, Bioresour. Technol. 237 (2017) 204–212.Doi: 10.1016/j.biortech.2017.02.058 [7] K. Promnuan, T. Higuchi, T. Imai, P. Kongjan, A. Reungsang, S. O-Thong, Simultaneous biohythane production and sulfate removal from rubber sheet wastewater by two-stage anaerobic digestion, Int. J. Hydrog. Energy 45 (1) (2020) 263–274.Doi: 10.1016/j.ijhydene.2019.10.237 [8] K. Vijayaraghavan, D. Ahmad, A.Y. Ahmad Yazid, Electrolytic treatment of latex wastewater, Desalination 219 (1–3) (2008) 214–221.Doi: 10.1016/j.desal.2007.05.014 [9] M. Sun, M.H. Qin, C. Wang, G.M. Weng, M.X. Huo, A.D. Taylor, J.H. Qu, M. Elimelech, Electrochemical-osmotic process for simultaneous recovery of electric energy, water, and metals from wastewater, Environ. Sci. Technol. 54 (13) (2020) 8430–8442.Doi: 10.1021/acs.est.0c01891 [10] Y. Zhang, L.M. Yang, K.P. Pramoda, W.X. Gai, S. Zhang, Highly permeable and fouling-resistant hollow fiber membranes for reverse osmosis, Chem. Eng. Sci. 207 (2019) 903–910.Doi: 10.1016/j.ces.2019.07.014 [11] C. Wang, M. Sun, Y.M. Zhao, M.X. Huo, X.Z. Wang, M. Elimelech, Photo-electrochemical osmotic system enables simultaneous metal recovery and electricity generation from wastewater, Environ. Sci. Technol. 55 (1) (2021) 604–613.Doi: 10.1021/acs.est.0c04375 [12] G. Han, S. Zhang, X. Li, N. Widjojo, T.S. Chung, Thin film composite forward osmosis membranes based on polydopamine modified polysulfone substrates with enhancements in both water flux and salt rejection, Chem. Eng. Sci. 80 (2012) 219–231.Doi: 10.1016/j.ces.2012.05.033 [13] K. Park, D.Y. Kim, Y.H. Jang, M.G. Kim, D.R. Yang, S. Hong, Comprehensive analysis of a hybrid FO/crystallization/RO process for improving its economic feasibility to seawater desalination, Water Res. 171 (2020) 115426.Doi: 10.1016/j.watres.2019.115426 [14] C. Lee, T.T. Nguyen, R.S. Adha, H.K. Shon, I.S. Kim, Influence of hydrodynamic operating conditions on organic fouling of spiral-wound forward osmosis membranes: Fouling-induced performance deterioration in FO-RO hybrid system, Water Res. 185 (2020) 116154.Doi: 10.1016/j.watres.2020.116154 [15] W.L. Ang, A.W. Mohammad, D. Johnson, N. Hilal, Unlocking the application potential of forward osmosis through integrated/hybrid process, Sci. Total Environ. 706 (2020) 136047.https://pubmed.ncbi.nlm.nih.gov/31864996/ [16] K.Y. Wang, M.M. Teoh, A. Nugroho, T.S. Chung, Integrated forward osmosis-membrane distillation (FO-MD) hybrid system for the concentration of protein solutions, Chem. Eng. Sci. 66 (11) (2011) 2421–2430.Doi: 10.1016/j.ces.2011.03.001 [17] J.J. Zhang, D. Wang, Y. Chen, B.Y. Gao, Z.N. Wang, Scaling control of forward osmosis-membrane distillation (FO-MD) integrated process for pre-treated landfill leachate treatment, Desalination 520 (2021) 115342.Doi: 10.1016/j.desal.2021.115342 [18] M.S. Nawaz, H.S. Son, Y. Jin, Y. Kim, S. Soukane, M.A. Al-Hajji, M. Abu-Ghdaib, N. Ghaffour, Investigation of flux stability and fouling mechanism during simultaneous treatment of different produced water streams using forward osmosis and membrane distillation, Water Res. 198 (2021) 117157.Doi: 10.1016/j.watres.2021.117157 [19] M.A. Hafiz, A.H. Hawari, A. Altaee, A hybrid forward osmosis/reverse osmosis process for the supply of fertilizing solution from treated wastewater, J. Water Process. Eng. 32 (2019) 100975.Doi: 10.1016/j.jwpe.2019.100975 [20] B.M. Jun, Y.A.J. Al-Hamadani, A. Son, C.M. Park, M. Jang, A. Jang, N.C. Kim, Y. Yoon, Applications of metal-organic framework based membranes in water purification: A review, Sep. Purif. Technol. 247 (2020) 116947.Doi: 10.1016/j.seppur.2020.116947 [21] G.Z. Ramon, T.V. Nguyen, E.M.V. Hoek, Osmosis-assisted cleaning of organic-fouled seawater RO membranes, Chem. Eng. J. 218 (2013) 173–182.Doi: 10.1016/j.cej.2012.12.006 [22] S. Lee, Y. Kim, J. Park, H.K. Shon, S. Hong, Treatment of medical radioactive liquid waste using Forward Osmosis (FO) membrane process, J. Membr. Sci. 556 (2018) 238–247.Doi: 10.1016/j.memsci.2018.04.008 [23] R. Valladares Linares, Z. Li, V. Yangali-Quintanilla, N. Ghaffour, G. Amy, T. Leiknes, J.S. Vrouwenvelder, Life cycle cost of a hybrid forward osmosis - low pressure reverse osmosis system for seawater desalination and wastewater recovery, Water Res. 88 (2016) 225–234.https://pubmed.ncbi.nlm.nih.gov/26512800/ [24] M. Arjmandi, M. Pourafshari Chenar, A. Altaee, A. Arjmandi, M. Peyravi, M. Jahanshahi, E. Binaeian, Caspian seawater desalination and whey concentration through forward osmosis (FO)-reverse osmosis (RO) and FO-FO-RO hybrid systems: Experimental and theoretical study, J. Water Process. Eng. 37 (2020) 101492.Doi: 10.1016/j.jwpe.2020.101492 [25] W.Y. Fu, J.H. Chen, C.Y. Li, L.C. Jiang, M. Qiu, X. Li, Y.G. Wang, L.F. Cui, Enhanced flux and fouling resistance forward osmosis membrane based on a hydrogel/MOF hybrid selective layer, J. Colloid Interface Sci. 585 (2021) 158–166.https://pubmed.ncbi.nlm.nih.gov/33279698/ [26] J.T. Hu, W.Y. Fu, F. Ni, X.H. Zhang, C.P. Yang, J.Q. Sang, An integrated process for the advanced treatment of hypersaline petrochemical wastewater: A pilot study, Water Res. 182 (2020) 116019.https://pubmed.ncbi.nlm.nih.gov/32544732/ [27] S. Tian, Z. Zhang, X. Zhang, K. Ken Ostrikov, Capacitative deionization using commercial activated carbon fiber decorated with polyaniline, J. Colloid Interface Sci. 537 (2019) 247–255.https://pubmed.ncbi.nlm.nih.gov/30448645/ [28] Y.S. Khoo, W.J. Lau, H. Chamani, T. Matsuura, A.F. Ismail, Water flux increase by inverting the membrane from its normal position - Is it occurring in FO and PRO? J. Water Process. Eng. 37 (2020) 101366.Doi: 10.1016/j.jwpe.2020.101366 [29] S.H. Oh, S.J. Im, S. Jeong, A. Jang, Nanoparticle charge affects water and reverse salt fluxes in forward osmosis process, Desalination 438 (2018) 10–18.Doi: 10.1016/j.desal.2018.03.015 [30] L.S. Ma, L. Gutierrez, T. van Vooren, M. Vanoppen, M. Kazemabad, A. Verliefde, E. Cornelissen, Fate of organic micropollutants in reverse electrodialysis: Influence of membrane fouling and channel clogging, Desalination 512 (2021) 115114.Doi: 10.1016/j.desal.2021.115114 [31] M. Zhan, Y. Kim, J. Lim, S. Hong, Application of fouling index for forward osmosis hybrid system: A pilot demonstration, J. Membr. Sci. 617 (2021) 118624.Doi: 10.1016/j.memsci.2020.118624 [32] M. Arjmandi, M. Peyravi, A. Altaee, A. Arjmandi, M. Pourafshari Chenar, M. Jahanshahi, E. Binaeian, A state-of-the-art protocol to minimize the internal concentration polarization in forward osmosis membranes, Desalination 480 (2020) 114355.Doi: 10.1016/j.desal.2020.114355 [33] M. Kahrizi, J.Y. Lin, G.Z. Ji, L.X. Kong, C.W. Song, L.F. Dumée, S. Sahebi, S.F. Zhao, Relating forward water and reverse salt fluxes to membrane porosity and tortuosity in forward osmosis: CFD modelling, Sep. Purif. Technol. 241 (2020) 116727.Doi: 10.1016/j.seppur.2020.116727 [34] X.X. Cheng, H. Liang, A. Ding, X.B. Tang, B. Liu, X.W. Zhu, Z.D. Gan, D.J. Wu, G.B. Li, Ferrous iron/peroxymonosulfate oxidation as a pretreatment for ceramic ultrafiltration membrane: Control of natural organic matter fouling and degradation of atrazine, Water Res. 113 (2017) 32–41.Doi: 10.1016/j.watres.2017.01.055 [35] S.C. He, D.Y. Jiang, M.H. Hong, Z.H. Liu, Hazard-free treatment and resource utilisation of electrolytic manganese residue: A review, J. Clean. Prod. 306 (2021) 127224.Doi: 10.1016/j.jclepro.2021.127224 [36] B. Tansel, G. Lunn, O. Monje, Struvite formation and decomposition characteristics for ammonia and phosphorus recovery: A review of magnesium-ammonia-phosphate interactions, Chemosphere 194 (2018) 504–514.https://pubmed.ncbi.nlm.nih.gov/29241124/ [37] H.L. Wang, X.H. Wang, F.G. Meng, X.F. Li, Y.P. Ren, Q.H. She, Effect of driving force on the performance of anaerobic osmotic membrane bioreactors: New insight into enhancing water flux of FO membrane via controlling driving force in a two-stage pattern, J. Membr. Sci. 569 (2019) 41–47.Doi: 10.1016/j.memsci.2018.10.010 [38] Y.H. Li, X.F. Zhang, Y.L. Wang, J.F. Wang, D.G. Wang, Feasibility study of multi-effect distillation dealing with high-salinity organic RO concentrates: Experiment and theoretical analysis, Desalination 505 (2021) 115007.Doi: 10.1016/j.desal.2021.115007 [39] C. Jacquin, G. Lesage, J. Traber, W. Pronk, M. Heran, Three-dimensional excitation and emission matrix fluorescence (3DEEM) for quick and pseudo-quantitative determination of protein- and humic-like substances in full-scale membrane bioreactor (MBR), Water Res. 118 (2017) 82–92.Doi: 10.1016/j.watres.2017.04.009 [40] F.H. Song, F.C. Wu, W.Y. Feng, Z. Tang, J.P. Giesy, F. Guo, D. Shi, X.F. Liu, N. Qin, B.S. Xing, Y.C. Bai, Fluorescence regional integration and differential fluorescence spectroscopy for analysis of structural characteristics and proton binding properties of fulvic acid sub-fractions, J. Environ. Sci. 74 (2018) 116–125.Doi: 10.1016/j.jes.2018.02.015 [41] K. Zhang, Z.H. Zhang, H. Wang, X.M. Wang, X.H. Zhang, Y.F. Xie, Synergistic effects of combining ozonation, ceramic membrane filtration and biologically active carbon filtration for wastewater reclamation, J. Hazard. Mater. 382 (2020) 121091.Doi: 10.1016/j.jhazmat.2019.121091 [42] S. Lee, H.K. Shon, S. Hong, Dewatering of activated sludge by forward osmosis (FO) with ultrasound for fouling control, Desalination 421 (2017) 79–88.Doi: 10.1016/j.desal.2017.02.010 [43] P. Danwanichakul, W. Pohom, J. Yingsampancharoen, L-Quebrachitol from acidic serum obtained after rubber coagulation of skim natural rubber latex, Ind. Crops Prod. 137 (2019) 157–161.Doi: 10.1016/j.indcrop.2019.04.072 [44] Y. Xue, Q. Miao, A. Zhao, Y.D. Zheng, Y.M. Zhang, P.Y. Wang, H. Kallio, B.R. Yang, Effects of sea buckthorn (Hippophaë rhamnoides) juice and L-quebrachitol on type 2 diabetes mellitus in db/db mice, J. Funct. Foods 16 (2015) 223–233.Doi: 10.1016/j.jff.2015.04.041 |
[1] | Aneela Sabir, Wail Falath, Muhammad Shafiq, Nafisa Gull, Maria Wasim, Karl I. Jacob. Effective desalination and anti-biofouling performance via surface immobilized MWCNTs on RO membrane [J]. Chinese Journal of Chemical Engineering, 2023, 56(4): 33-45. |
[2] | Kai Zhang, Huan-Huan Wu, Hui-Qian Huo, Yan-Li Ji, Yong Zhou, Cong-Jie Gao. Recent advances in nanofiltration, reverse osmosis membranes and their applications in biomedical separation field [J]. Chinese Journal of Chemical Engineering, 2022, 49(9): 76-99. |
[3] | Dongze Ma, Ye Tian, Tiefei He, Xiaobiao Zhu. Preparation of novel magnetic nanoparticles as draw solutes in forward osmosis desalination [J]. Chinese Journal of Chemical Engineering, 2022, 46(6): 223-230. |
[4] | Jing Dou, Shuo Han, Saisai Lin, Zhikan Yao, Lian Hou, Lin Zhang. Highly permeable reverse osmosis membranes incorporated with hydrophilic polymers of intrinsic microporosity via interfacial polymerization [J]. Chinese Journal of Chemical Engineering, 2022, 45(5): 194-202. |
[5] | Santiago Gutiérrez Ruiz, Juan Antonio López-Ramírez, Mohammed Hassani Zerrouk, Agata Egea-Corbacho Lopera, José María Quiroga Alonso. Study of reverse osmosis membranes fouling by inorganic salts and colloidal particles during seawater desalination [J]. Chinese Journal of Chemical Engineering, 2020, 28(3): 733-742. |
[6] | Wan Nur Ain Shuhada Abdullah, Sirinan Tiandee, Woeijye Lau, Farhana Aziz, Ahmad Fauzi Ismail. Potential use of nanofiltration like-forward osmosis membranes for copper ion removal [J]. Chinese Journal of Chemical Engineering, 2020, 28(2): 420-428. |
[7] | Zhiqiang Li, Lanying Jiang, Chongjian Tang. Investigation on removing recalcitrant toxic organic polluters in coking wastewater by forward osmosis [J]. Chinese Journal of Chemical Engineering, 2020, 28(1): 122-135. |
[8] | Jeng Yih Law, Abdul Wahab Mohammad. Osmotic concentration of succinic acid by forward osmosis: Influence of feed solution pH and evaluation of seawater as draw solution [J]. Chin.J.Chem.Eng., 2018, 26(5): 976-983. |
[9] | Mostafa Taherian, Seyed Mahmoud Mousavi, Hooman Chamani. An agent-based simulation with NetLogo platform to evaluate forward osmosis process (PRO Mode) [J]. Chin.J.Chem.Eng., 2018, 26(12): 2487-2494. |
[10] | Jie Li, Mingjie Wei, Yong Wang. Substrate matters:The influences of substrate layers on the performances of thin-film composite reverse osmosis membranes [J]. Chin.J.Chem.Eng., 2017, 25(11): 1676-1684. |
[11] | Yanni Wang, Hairong Yu, Rui Xie, Kuangmin Zhao, Xiaojie Ju, WeiWang, Zhuang Liu, Liangyin Chu. An easily recoverable thermo-sensitive polyelectrolyte as draw agent for forward osmosis process [J]. Chin.J.Chem.Eng., 2016, 24(1): 86-93. |
[12] | Dieling Zhao, Shucheng Chen, Chun Xian Guo, Qipeng Zhao, Xianmao Lu. Multi-functional forward osmosis draw solutes for seawater desalination [J]. Chin.J.Chem.Eng., 2016, 24(1): 23-30. |
[13] | WU Xianli, HU Yangdong, WU Lianying, LI Hong. Model and Design of Cogeneration System for Different Demands of Desalination Water, Heat and Power Production [J]. Chin.J.Chem.Eng., 2014, 22(3): 330-338. |
[14] | QIAN Zhi, LIU Xin-Chun, YU Zhi-Sheng, ZHANG Hong-Xun, Jü Yi-Wen. A Pilot-scale Demonstration of Reverse Osmosis Unit for Treatment of Coal-bed Methane Co-produced Water and Its Modeling [J]. Chin.J.Chem.Eng., 2012, 20(2): 302-311. |
[15] | LIU Feini, ZHANG Guoliang, MENG Qin, ZHANG Hongzi. Performance of Nanofiltration and Reverse Osmosis Membranes in Metal Effluent Treatment [J]. , 2008, 16(3): 441-445. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||