Chinese Journal of Chemical Engineering ›› 2023, Vol. 57 ›› Issue (5): 338-348.DOI: 10.1016/j.cjche.2022.11.006
Bingxiao Feng, Lining Hao, Chaoting Deng, Jiaqiang Wang, Hongbing Song, Meng Xiao, Tingting Huang, Quanhong Zhu, Hengjun Gai
Received:
2022-08-29
Revised:
2022-11-15
Online:
2023-07-08
Published:
2023-05-28
Contact:
Hongbing Song,E-mail:cehbsong@qust.edu.cn;Hengjun Gai,E-mail:hjgai@126.com
Supported by:
Bingxiao Feng, Lining Hao, Chaoting Deng, Jiaqiang Wang, Hongbing Song, Meng Xiao, Tingting Huang, Quanhong Zhu, Hengjun Gai
通讯作者:
Hongbing Song,E-mail:cehbsong@qust.edu.cn;Hengjun Gai,E-mail:hjgai@126.com
基金资助:
Bingxiao Feng, Lining Hao, Chaoting Deng, Jiaqiang Wang, Hongbing Song, Meng Xiao, Tingting Huang, Quanhong Zhu, Hengjun Gai. A highly hydrothermal stable copper-based catalyst for catalytic wet air oxidation of m-cresol in coal chemical wastewater[J]. Chinese Journal of Chemical Engineering, 2023, 57(5): 338-348.
Bingxiao Feng, Lining Hao, Chaoting Deng, Jiaqiang Wang, Hongbing Song, Meng Xiao, Tingting Huang, Quanhong Zhu, Hengjun Gai. A highly hydrothermal stable copper-based catalyst for catalytic wet air oxidation of m-cresol in coal chemical wastewater[J]. 中国化学工程学报, 2023, 57(5): 338-348.
Add to citation manager EndNote|Ris|BibTeX
URL: https://cjche.cip.com.cn/EN/10.1016/j.cjche.2022.11.006
[1] K.C. Xie, Reviews of clean coal conversion technology in China: Situations & challenges, Chin. J. Chem. Eng. 35 (2021) 62–69. [2] Y.G. Xia, H.M. Sun, T.L. Wang, J. Liang, B.Y. Yang, H.X. Kuang, A modified GC-MS analytical procedure for separation and detection of multiple classes of carbohydrates, Molecules 23 (6) (2018) 1284. [3] H.J. Gai, H.B. Song, M. Xiao, Y.R. Feng, Y.M. Wu, H. Zhou, B.H. Chen, Conceptual design of a modified phenol and ammonia recovery process for the treatment of coal gasification wastewater, Chem. Eng. J. 304 (2016) 621–628. [4] M.X. Chen, H.J. Gao, D.F. Sun, Z.H. Guo, G. Wang, A review on treatment technologies for coal gasification wastewater and relating application progress, Mod. Chem. Ind. 39 (2019) (12)62–65. [5] A.K. Sushma, Saroha, Biodegradability enhancement of industrial organic raffinate containing pyridine and its derivatives by CWAO using ceria promoted MnOx/Al2O3 catalyst at atmospheric pressure, Chem. Eng. J. 334 (2018) 985–994. [6] P. Gupta, K. Pandey, N. Verma, Augmented complete mineralization of glyphosate in wastewater via microbial degradation post CWAO over supported Fe-CNF, Chem. Eng. J. 428 (2022) 132008. [7] B. Palas, G. Ersöz, S. Atalay, Biotemplated copper oxide catalysts over graphene oxide for acetaminophen removal: Reaction kinetics analysis and cost estimation, Chem. Eng. Sci. 242 (2021) 116593. [8] C.J. Gai, H.B. Song, X.F. Liu, F.K. Li, M. Xiao, T.T. Huang, H.J. Gai, Nitrogen doping carbon deriving from ionic liquid anchoring Ru coated on P-zeolite as high activity and stability catalyst for the catalytic wet air oxidation of highly concentrated ammonia, Mol. Catal. 515 (2021) 111941. [9] J.L. Fu, K.X. Yang, C.J. Ma, N. Zhang, H.J. Gai, J.B. Zheng, B.H. Chen, Bimetallic Ru-Cu as a highly active, selective and stable catalyst for catalytic wet oxidation of aqueous ammonia to nitrogen, Appl. Catal. B Environ. 184 (2016) 216–222. [10] C. Lousteau, M. Besson, C. Descorme, Catalytic wet air oxidation of ammonia over supported noble metals, Catal. Today 241 (2015) 80–85. [11] H.Y. Fan, G.Y. Yi, Z.T. Zhang, X.X. Zhang, P. Li, C.X. Zhang, L.J. Chen, Y.L. Zhang, Q. Sun, Fabrication of Ag particles deposited BiVO4 photoanode for significantly efficient visible-light driven photoelectrocatalytic degradation of β-naphthol, J. Environ. Chem. Eng. 10 (2) (2022) 107221. [12] Z. Zhang, Y.S. Gao, Q. Wang, Fabrication, activity and mechanism studies of transition metal molybdate/molybdenum trioxide hybrids as novel CWAO catalysts, Sep. Purif. Technol. 191 (2018) 354–363. [13] A. Yadav, A.K. Teja, N. Verma, Removal of phenol from water by catalytic wet air oxidation using carbon bead - supported iron nanoparticle - containing carbon nanofibers in an especially configured reactor, J. Environ. Chem. Eng. 4 (2) (2016) 1504–1513. [14] Z. Jiang, Y. Xie, C.F. Li, J.H. Zheng, M.Y. Si, R.Y. Xiao, Q. Liao, W.C. Yang, Non-radical dominated catalytic degradation of chlorophenol by a structure-tailored catalyst of high nitrogen doping carbon matrix with nano-CuO, SSRN Electron. J. (2021):107559. [15] C.J. Lai, T.Q. He, X.W. Li, F. Chen, L.H. Yue, Z.Y. Hou, Catalytic wet air oxidation of phenols over porous plate Cu-based catalysts, Appl. Clay Sci. 181 (2019) 105253. [16] J. Liu, C.Y. Yu, P.Q. Zhao, G.X. Chen, Comparative study of supported CuOx and MnOx catalysts for the catalytic wet air oxidation of β-naphthol, Appl. Surf. Sci. 258 (22) (2012) 9096–9102. [17] S.S. Jiang, H.P. Zhang, Y. Yan, Catalytic wet peroxide oxidation of phenol wastewater over a novel Cu-ZSM-5 membrane catalyst, Catal. Commun. 71 (2015) 28–31. [18] Y. Nagai, T. Hirabayashi, K. Dohmae, N. Takagi, T. Minami, H. Shinjoh, S. Matsumoto, Sintering inhibition mechanism of platinum supported on ceria-based oxide and Pt-oxide-support interaction, J. Catal. 242 (1) (2006) 103–109. [19] Y.F. Zhang, H.X. Liu, F.X. Gao, X.L. Tan, Y.W. Cai, B.W. Hu, Q.F. Huang, M. Fang, X.K. Wang, Application of MOFs and COFs for photocatalysis in CO2 reduction, H2 generation, and environmental treatment, EnergyChem 4 (4) (2022) 100078. [20] M. Fang, X.L. Tan, Z.X. Liu, B.W. Hu, X.K. Wang, Recent progress on metal-enhanced photocatalysis: R review on the mechanism, Research (Wash D C) 2021 (2021) 9794329. [21] J. Zhang, H. Wang, L. Wang, S. Ali, C.T. Wang, L.X. Wang, X.J. Meng, B. Li, D.S. Su, F.S. Xiao, Wet-chemistry strong metal-support interactions in titania-supported Au catalysts, J. Am. Chem. Soc. 141 (7) (2019) 2975–2983. [22] L.-P. Yuan, T. Tang, J.-S. Hu, L.-J. Wan, Confinement Strategies for Precise Synthesis of Efficient Electrocatalysts from the Macroscopic to the Atomic Level, Accounts Mater. Res. 2(10) (2021) 907-919. https://doi.org/10.1021/accountsmr.1c00135. [23] Z.X. Li, H. Zhang, L.T. Kong, Z.X. Chen, Y.T. Yang, X.F. Liu, M.L. Deng, Y.M. Zhou, Coordination and space confined preparation of nickel sub-nanoparticles within a metal-organic framework for catalytic degradation of methyl orange, J. Environ. Chem. Eng. 8 (5) (2020) 104363. [24] Y.X. Wang, H.Y. Su, Y.H. He, L.G. Li, S.Q. Zhu, H. Shen, P.F. Xie, X.B. Fu, G.Y. Zhou, C. Feng, D.K. Zhao, F. Xiao, X.J. Zhu, Y.C. Zeng, M.H. Shao, S.W. Chen, G. Wu, J. Zeng, C. Wang, Advanced electrocatalysts with single-metal-atom active sites, Chem. Rev. 120 (21) (2020) 12217–12314. [25] X.L. Liu, G. Verma, Z.S. Chen, B.W. Hu, Q.F. Huang, H. Yang, S.Q. Ma, X.K. Wang, Metal-organic framework nanocrystal-derived hollow porous materials: Synthetic strategies and emerging applications, Innovation (Camb) 3 (5) (2022) 100281. [26] P. Panagiotopoulou, Methanation of CO2 over alkali-promoted Ru/TiO2 catalysts: II. Effect of alkali additives on the reaction pathway, Appl. Catal. B Environ. 236 (2018) 162–170. [27] Y.B. Zhou, S. Xu, Y.L. Zhang, X.M. Hu, F.H. Li, X.J. Chen, H.S. Cai, J.F. Wang, L. Shi, X.M. Chen, Synergistic effect over a remarkable durable and active polymetallic Ru-doped Fe-Co-Ce/γ-Al2O3 nanocatalyst: Interfacial Lewis acid-base pair dependent reaction mechanism for landfill leachate, Chem. Eng. J. 382 (2020) 122938. [28] W.W. McNeary, S.A. Tacey, G.D. Lahti, D.R. Conklin, K.A. Unocic, E.C.D. Tan, E.C. Wegener, T.E. Erden, S. Moulton, C. Gump, J. Burger, M.B. Griffin, C.A. Farberow, M.J. Watson, L. Tuxworth, K.M. van Allsburg, A.A. Dameron, K. Buechler, D.R. Vardon, Atomic layer deposition with TiO2 for enhanced reactivity and stability of aromatic hydrogenation catalysts, ACS Catal. 11 (14) (2021) 8538–8549. [29] Y.X. Chen, Y.X. Chen, W.Z. Li, S.S. Sheng, Sulphur-resistant character of titania-supported platinum catalysts, Appl. Catal. 63 (1) (1990) 107–115. [30] M. Xiao, Y.F. Qi, Q.M. Feng, K. Li, K.Q. Fan, T.T. Huang, P. Qu, H.J. Gai, H.B. Song, P-cresol degradation through Fe(III)-EDDS/H2O2 Fenton-like reaction enhanced by Manganese ion: Effect of pH and reaction mechanism, Chemosphere 269 (2021) 129436. [31] C.J.G. van der Grift, A.F.H. Wielers, B.P.J. Jogh, J. van Beunum, M. De Boer, M. Versluijs-Helder, J.W. Geus, Effect of the reduction treatment on the structure and reactivity of silica-supported copper particles, J. Catal. 131 (1) (1991) 178–189. [32] J.A.L. Perini, K. Irikura, L.D.M. Torquato, J.B.D.S. Flor, M.V.B. Zanoni, Effect of ionic liquid in a pressurized reactor to enhance CO2 photocatalytic reduction at TiO2 modified by gold nanoparticles, J. Catal. 405 (2022) 588–600. [33] M.G. Song, Y.S. Wang, Y. Guo, L. Wang, W.C. Zhan, Y.L. Guo, G.Z. Lu, Catalytic wet oxidation of aniline over Ru catalysts supported on a modified TiO2, Chin. J. Catal. 38 (7) (2017) 1155–1165. [34] H.J. Gai, X.F. Liu, B.X. Feng, C.J. Gai, T.T. Huang, M. Xiao, H.B. Song, An alternative scheme of biological removal of ammonia nitrogen from wastewater-highly dispersed Ru cluster @mesoporous TiO2 for the catalytic wet air oxidation of low-concentration ammonia, Chem. Eng. J. 407 (2021) 127082. [35] Y.F. Sun, F. Polo-Garzon, Z.H. Bao, J. Moon, Z.N. Huang, H. Chen, Z.T. Chen, Z.Z. Yang, M.F. Chi, Z.L. Wu, J. Liu, S. Dai, Manipulating copper dispersion on ceria for enhanced catalysis: A nanocrystal-based atom-trapping strategy, Adv. Sci. (Weinh) 9 (8) (2022) e2104749. [36] C.Y. Dong, Y.L. Li, D.Y. Cheng, M.T. Zhang, J.J. Liu, Y.G. Wang, D.Q. Xiao, D. Ma, Supported metal clusters: Fabrication and application in heterogeneous catalysis, ACS Catal. 10 (19) (2020) 11011–11045. [37] J. Lu, Z.Y. Jiang, J. Ren, W. Zhang, P. Li, Z.Z. Chen, W. Zhang, H. Wang, B. Tang, (Eds.), One-pot synthesis of multifunctional carbon-based nanoparticle-supported dispersed Cu2+ disrupts redox homeostasis to enhance CDT, Angew. Chem. Int, Engl 61 (4) (2022) e202114373. [38] X.Q. Qiu, M. Miyauchi, K. Sunada, M. Minoshima, M. Liu, Y. Lu, D. Li, Y. Shimodaira, Y. Hosogi, Y. Kuroda, K. Hashimoto, Hybrid Cu(x)O/TiO2 nanocomposites as risk-reduction materials in indoor environments, ACS Nano 6 (2) (2012) 1609–1618. [39] Y.X. Duan, F.L. Meng, K.H. Liu, S.S. Yi, S.J. Li, J.M. Yan, Q. Jiang, Amorphizing of Cu nanoparticles toward highly efficient and robust electrocatalyst for CO2 reduction to liquid fuels with high faradaic efficiencies, Adv. Mater. Deerfield Beach Fla 30 (14) (2018) e1706194. [40] C.W. Li, M.W. Kanan, CO2 reduction at low overpotential on Cu electrodes resulting from the reduction of thick Cu2O films, J. Am. Chem. Soc. 134 (17) (2012) 7231–7234. [41] P. Liu, E.J.M. Hensen, Highly efficient and robust Au/MgCuCr2O4 catalyst for gas-phase oxidation of ethanol to acetaldehyde, J. Am. Chem. Soc. 135 (38) (2013) 14032–14035. [42] Z.J. Zeng, H.W. Huang, Z.Q. Fu, H.W. Lai, B. Long, A. Ali, T. Song, G.J. Deng, Plasmonic Cu NPs-embedded phenothiazine benzene with tunable bonding units for superior photocatalytic CO2 reduction, Appl. Surf. Sci. 550 (2021) 149361. [43] L.J. Liu, F. Gao, H.L. Zhao, Y. Li, Tailoring Cu valence and oxygen vacancy in Cu/TiO2 catalysts for enhanced CO2 photoreduction efficiency, Appl. Catal. B Environ. 134-135 (2013) 349–358. [44] X.H. Zheng, Y.L. Li, W.L. You, G.C. Lei, Y.N. Cao, Y.F. Zhang, L.L. Jiang, Construction of Fe-doped TiO2-x ultrathin nanosheets with rich oxygen vacancies for highly efficient oxidation of H2S, Chem. Eng. J. 430 (2022) 132917. [45] Q. Zhao, Y.F. Zheng, C.F. Song, Q.L. Liu, N. Ji, D.G. Ma, X.B. Lu, Novel monolithic catalysts derived from in situ decoration of Co3O4 and hierarchical Co3O4@MnOx on Ni foam for VOC oxidation, Appl. Catal. B Environ. 265 (2020) 118552. [46] F.G. Lu, C.Y. Yu, X. Meng, G.X. Chen, P.Q. Zhao, Degradation of highly concentrated organic compounds over a supported Ru-Cu bimetallic catalyst, New J. Chem. 41 (9) (2017) 3280–3289. [47] H.Y. Wang, G.Q. Li, S.T. Zhang, Y. Li, Y.L. Zhao, L.Y. Duan, Y.F. Zhang, Preparation of Cu-loaded biomass-derived activated carbon catalysts for catalytic wet air oxidation of phenol, Ind. Eng. Chem. Res. 59 (7) (2020) 2908–2920. [48] A. Quintanilla, J.A. Casas, A.F. Mohedano, J.J. Rodríguez, Reaction pathway of the catalytic wet air oxidation of phenol with a Fe/activated carbon catalyst, Appl. Catal. B Environ. 67 (3–4) (2006) 206–216. [49] C. Guérette, P. Lemoine, P. Ramirez, P.A. Segura, Determination of short-chain carboxylic acids and non-targeted analysis of water samples treated by wet air oxidation using gas chromatography-mass spectrometry, J. Chromatogr. A 1652 (2021) 462352. [50] R.R. Zapico, P. Marín, F.V. Díez, S. Ordóñez, Influence of operation conditions on the copper-catalysed homogeneous wet oxidation of phenol: Development of a kinetic model, Chem. Eng. J. 270 (2015) 122–132. [51] H.R. Song, D.Y. Zu, C.P. Li, R. Zhou, Y.W. Wang, W. Zhang, S.T. Pan, Y. Cai, Z. Li, Y.M. Shen, J. Ma, Ultrafast activation of peroxymonosulfate by reduction of trace Fe3+ with Ti3C2 MXene under neutral and alkaline conditions: Reducibility and confinement effect, Chem. Eng. J. 423 (2021) 130012. [52] P. Fernández-Castro, M. Vallejo, M.F. San Román, I. Ortiz, Insight on the fundamentals of advanced oxidation processes. Role and review of the determination methods of reactive oxygen species, J. Chem. Technol. Biotechnol. 90 (5) (2015) 796–820. [53] Y. Xu, H.N. Shao, F. Ge, Y. Liu, Novel-structured Mo-Cu-Fe-O composite for catalytic air oxidation of dye-containing wastewater under ambient temperature and pressure, Chin. J. Catal. 38 (10) (2017) 1719–1725. [54] L.B. Zhou, Y.B. Xie, H.B. Cao, Z. Guo, J.W. Wen, Y.C. Shi, Enhanced removal of benzothiazole in persulfate promoted wet air oxidation via degradation and synchronous polymerization, Chem. Eng. J. 370 (2019) 208–217. [55] Y. Nosaka, A. Nosaka, Understanding hydroxyl radical (OH) generation processes in photocatalysis, ACS Energy Lett. 1 (2) (2016) 356–359. [56] T. Wang, D.Y. Zhao, J. Cao, Q.L. Zeng, W. Li, B. Liu, D. He, Y.Y. Liu, FeS-mediated mobilization and immobilization of Cr(III) in oxic aquatic systems, Water Res. 211 (2022) 118077. [57] S. Bhargava, J. Tardio, J. Prasad, K. Foger, D. Akolekar, S. Grocott, Wet oxidation and catalytic wet oxidation, Ind. Eng. Chem. Res. 45(4) (2006) 1221-1258. https://doi.org/10.1021/ie051059n. [58] C. Levard, E.M. Hotze, G.V. Lowry, G.E. Brown Jr, Environmental transformations of silver nanoparticles: Impact on stability and toxicity, Environ. Sci. Technol. 46 (13) (2012) 6900–6914. [59] X.Y. Jiang, H.J. Li, X.M. Zheng, Catalytic activity of CuO-loaded TiO2/γ-Al2O3 for NO reduction by CO, J Mater Sci 43 (19) (2008) 6505–6512. [60] L. Rizzo, Bioassays as a tool for evaluating advanced oxidation processes in water and wastewater treatment, Water Res. 45 (15) (2011) 4311–4340. [61] G. Maniakova, I. Salmerón, M. Aliste, M. Inmaculada Polo-López, I. Oller, S. Malato, L. Rizzo, Solar photo-Fenton at circumneutral pH using Fe(III)-EDDS compared to ozonation for tertiary treatment of urban wastewater: Contaminants of emerging concern removal and toxicity assessment, Chem. Eng. J. 431 (2022) 133474. [62] X.Y. Pei, H.Y. Ren, G.S. Liu, G.L. Cao, G.J. Xie, D.F. Xing, N.Q. Ren, B.F. Liu, Non-radical mechanism and toxicity analysis of β-cyclodextrin functionalized biochar catalyzing the degradation of bisphenol A and its analogs by peroxydisulfate, J. Hazard. Mater. 424 (2022) 127254. [63] Q.H. Ji, S. Tabassum, S. Hena, C.G. Silva, G.X. Yu, Z.J. Zhang, A review on the coal gasification wastewater treatment technologies: Past, present and future outlook, J. Clean. Prod. 126 (2016) 38–55. [64] Q. Mei, J.F. Sun, D.N. Han, B. Wei, Z.X. An, X.Y. Wang, J. Xie, J.H. Zhan, M.X. He, Sulfate and hydroxyl radicals-initiated degradation reaction on phenolic contaminants in the aqueous phase: Mechanisms, kinetics and toxicity assessment, Chem. Eng. J. 373 (2019) 668–676. [65] B.J. Huo, F.Q. Meng, J.W. Yang, Y.L. Wang, J.G. Qi, W. Ma, Z.C. Wang, J.X. Wang, Z.H. Wang, High efficiently piezocatalysis degradation of tetracycline by few-layered MoS2/GDY: Mechanism and toxicity evaluation, Chem. Eng. J. 436 (2022) 135173. |
[1] | Yuxi Chai, Yanan Zhang, Yannan Tan, Zhiwei Li, Huangzhao Wei, Chenglin Sun, Haibo Jin, Zhao Mu, Lei Ma. Life cycle assessment of high concentration organic wastewater treatment by catalytic wet air oxidation [J]. Chinese Journal of Chemical Engineering, 2023, 56(4): 80-88. |
[2] | Yongli Zhang, Feng Peng, Yanbo Zhou. Structure, characterization, and dynamic performance of a wet air oxidation catalyst Cu-Fe-La/α-Al2O3 [J]. , 2016, 24(9): 1171-1177. |
[3] | Li Li, Hong Qi. Gas separation using sol-gel derived microporous zirconia membranes with high hydrothermal stability [J]. Chin.J.Chem.Eng., 2015, 23(8): 1300-1306. |
[4] | Aiying Song, Gongxuan Lu. Selective oxidation of methylamine over zirconia supported Pt-Ru, Pt and Ru catalysts [J]. Chin.J.Chem.Eng., 2015, 23(7): 1206-1213. |
[5] |
KE Ming, WANG Xieqing, ZHANG Fengmei.
Physicochemical Features of Phosphorus-Modified ZSM-5 Zeolite and Its Performance on Catalytic Pyrolysis to Produce Ethylene [J]. , 2003, 11(6): 671-676. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||