Chinese Journal of Chemical Engineering ›› 2023, Vol. 59 ›› Issue (7): 279-289.DOI: 10.1016/j.cjche.2023.01.018
Yi Wu, Pengfei Song, Ningyan Li, Yanan Jiang, Yuan Liu
Received:
2022-11-10
Revised:
2023-01-07
Online:
2023-10-14
Published:
2023-07-28
Contact:
Pengfei Song,E-mail:1021207126@tju.edu.cn;Yuan Liu,E-mail:yuanliu@tju.edu.cn
Supported by:
Yi Wu, Pengfei Song, Ningyan Li, Yanan Jiang, Yuan Liu
通讯作者:
Pengfei Song,E-mail:1021207126@tju.edu.cn;Yuan Liu,E-mail:yuanliu@tju.edu.cn
基金资助:
Yi Wu, Pengfei Song, Ningyan Li, Yanan Jiang, Yuan Liu. Molybdenum tailored Co0/Co2+ active pairs on a perovskite-type oxide for direct ethanol synthesis from syngas[J]. Chinese Journal of Chemical Engineering, 2023, 59(7): 279-289.
Yi Wu, Pengfei Song, Ningyan Li, Yanan Jiang, Yuan Liu. Molybdenum tailored Co0/Co2+ active pairs on a perovskite-type oxide for direct ethanol synthesis from syngas[J]. 中国化学工程学报, 2023, 59(7): 279-289.
Add to citation manager EndNote|Ris|BibTeX
URL: https://cjche.cip.com.cn/EN/10.1016/j.cjche.2023.01.018
[1] G.B. Liu, G.H. Yang, X.B. Peng, J.H. Wu, N. Tsubaki, Recent advances in the routes and catalysts for ethanol synthesis from syngas, Chem. Soc. Rev. 51 (13) (2022) 5606-5659. [2] A.E. Farrell, R.J. Plevin, B.T. Turner, A.D. Jones, M. O'Hare, D.M. Kammen, Ethanol can contribute to energy and environmental goals, Science 311 (5760) (2006) 506-508. [3] H.T. Luk, C. Mondelli, D.C. Ferrt, J.A. Stewart, J. Ptrez-Ramirez, Status and prospects in higher alcohols synthesis from syngas, Chem. Soc. Rev. 46 (5) (2017) 1358 - 1426. [4] M. Ni, D.Y.C. Leung, M.K.H.Leung, A review on reforming bio-ethanol for hydrogen production, Int. J. Hydrog. Energy 32 (15) (2007) 3238-3247. [5] H. Aitchison, R.L. Wingad, D.F.Wass, Homogeneous ethanol to butanol catalysis—guerbet renewed, ACS Catal. 6 (10) (2016) 7125-7132. [6] A. Mohsenzadeh, A. Zamani, M.J.Taherzadeh, Bioethylene production from ethanol: A review and techno-economical evaluation, Chembioeng Rev. 4 (2) (2017) 75-91. [7] D.U. Pascoli, A. Suko, R. Gustafson, H.L. Gough, R. Bura, Novel ethanol production using biomass preprocessing to increase ethanol yield and reduce overall costs, Biotechnol Biofuels 14 (1) (2021) 9. [8] C.T. Wang, J. Zhang, G.Q. Qin, L. Wang, E. Zuidema, Q. Yang, S.S. Dang, C.G. Yang, J.P. Xiao, X.J. Meng, C. Mesters, F.S.Xiao, Direct conversion of syngas to ethanol within zeolite crystals, Chem 6 (3) (2020) 646-657. [9] C. Huang, C. Zhu, M.W. Zhang, Y.W. Lu, Q.H. Wang, H.M. Qian, J.G. Chen, K.G.Fang, Direct conversion of syngas to higher alcohols over a CuCoAl|t-ZrO2 multifunctional catalyst, ChemCatChem 13 (13) (2021) 3184-3197. [10] Y.Y. Liu, K. Murata, M. Inaba, I. Takahara, K.Okabe, Mixed alcohols synthesis from syngas over cs- and Ni-modified Cu/CeO2 catalysts, Fuel 104 (2013) 62-69. [11] H. Du, H.J. Zhu, X.K. Chen, W.D. Dong, W. Lu, W.T. Luo, M. Jiang, T. Liu, Y.J.Ding, Study on CaO-promoted Co/AC catalysts for synthesis of higher alcohols from syngas, Fuel 182 (2016) 42-49. [12] R.G. Zhang, G.X. Wen, H. Adidharma, A.G. Russell, B.J. Wang, M. Radosz, M.H.Fan, C2 oxygenate synthesis via Fischer-Tropsch synthesis on Co2C and Co/Co2C interface catalysts: How to control the catalyst crystal facet for optimal selectivity, ACS Catal. 7 (12) (2017) 8285-8295. [13] Chen, Yang, Composition control of CuFeZn catalyst derived by PDA and its effect on synthesis of C2+ alcohols from CO2, Fuel 327 (2022) 125055. [14] Y.Z. Yang, T.J. Lin, X.Z. Qi, F. Yu, Y.L. An, Z.J. Li, Y.Y. Dai, L.S. Zhong, H. Wang, Y.H.Sun, Direct synthesis of long-chain alcohols from syngas over CoMn catalysts, Appl. Catal. A Gen. 549 (2018) 179-187. [15] M.M. Lv, W. Xie, S. Sun, G.M. Wu, L.R. Zheng, S.Q. Chu, C. Gao, J. Bao, Activated-carbon-supported K-Co-Mo catalysts for synthesis of higher alcohols from syngas, Catal. Sci. Technol. 5 (5) (2015) 2925-2934. [16] J.K. Hasty, S. Ponnurangam, S. Turn, P. Somasundaran, T. Kim, D.Mahajan, Catalytic synthesis of mixed alcohols mediated with nano-MoS2 microemulsions, Fuel 164 (2016) 339-346. [17] E.T. Liakakou, E. Heracleous, Transition metal promoted K/Mo2C as efficient catalysts for CO hydrogenation to higher alcohols, Catal. Sci. Technol. 6 (4) (2016) 1106-1119. [18] P. Preikschas, M. Plodinec, J. Bauer, R. Kraehnert, R. Naumann d’Alnoncourt, R. Schlögl, M. Driess, F.Rosowski, Tuning the Rh-FeOx interface in ethanol synthesis through formation phase studies at high pressures of synthesis gas, ACS Catal. 11 (7) (2021) 4047-4060. [19] L. Zhao, X.L. Mu, T.S. Liu, K.G. Fang, Bimetallic Ni-Co catalysts supported on Mn-Al oxide for selective catalytic CO hydrogenation to higher alcohols, Catal. Sci. Technol. 8 (8) (2018) 2066-2076. [20] Jiaqian, Yang, Insights into the one-step ethanol synthesis through CO hydrogenation over surfactant-assisted preparation of CuCo/SiO2 catalyst, Fuel 327 (2022) 125078. [21] P.F. Song, J.M. Wang, G.L. Liu, Z.Y. Zhang, N.Y. Li, X.T. Wang, W. Zhou, Y.Liu, Self-optimized and renewable Ni-Co alloy@Co-Co2C catalyst for higher alcohols synthesis from syngas, Int. J. Hydrog. Energy 47 (38) (2022) 16933-16948. [22] X.Z. Zhu, Y.S. Shang, J.Y. Chen, H. Wei, D.P. Xu, X.C. Lin, Y.G. wang, Insight into the role of lanthanum-modified CuCo based catalyst for higher alcohol synthesis from syngas, Fuel Process. Technol. 235 (2022) 107378 [23] T.Y. Chen, J.J. Su, Z.P. Zhang, C.X. Cao, X. Wang, R. Si, X.L. Liu, B.F. Shi, J. Xu, Y.F.Han, Structure evolution of Co-CoOx interface for higher alcohol synthesis from syngas over Co/CeO2 catalysts, ACS Catal. 8 (9) (2018) 8606-8617. [24] M. Blanchard, H. Derule, P. Canesson, Cobalt catalysts for the production of alcohols in the F.T. synthesis, Catal Lett 2 (5) (1989) 319-322. [25] Zhe, An, Ga-promoted CO insertion and C-C coupling on Co catalysts for the synthesis of ethanol and higher alcohols from syngas, J. Catal. 356 (2017) 157-164. [26] Pengfei, Song, The active pairs of Co-Co2C adjusted by La-doped CaTiO3 with perovskite phase for higher alcohol synthesis from syngas, Chem. Eng. J. 439 (2022) 135635. [27] J.M. Wang, G.L. Liu, H.X. Zhong, P.F. Song, K. An, Z.Y. Zhang, A. Cao, Y.Liu, in situ topochemical carbonization derivative Co-Ni alloy@Co-Co2C for direct ethanol synthesis from syngas, Appl. Surf. Sci. 557 (2021) 149826. [28] Q.L. Yang, G.L. Liu, Y.Liu, Perovskite-type oxides as the catalyst precursors for preparing supported metallic nanocatalysts: A review, Ind. Eng. Chem. Res. 57 (1) (2018) 1-17. [29] Lin, Zhao, Ni-Co alloy catalyst from LaNi1-xCoxO3 perovskite supported on zirconia for steam reforming of ethanol, Appl. Catal. B Environ. 187 (2016) 19-29. [30] D. Chen, C. Chen, Z.M. Baiyee, Z. Shao, F. Ciucci, Nonstoichiometric oxides as low-cost and highly-efficient oxygen reduction/evolution catalysts for low-temperature electrochemical devices, Chem. Rev. 115 (18) (2015) 9869-9921. [31] Y.Z. Fang, Y. Liu, L.H. Zhang, LaFeO3-supported nano Co-Cu catalysts for higher alcohol synthesis from syngas, Appl. Catal. A Gen. 397 (1-2) (2011) 183-191. [32] Q.Q. Ji, L. Bi, J.T. Zhang, H.J. Cao, X.S. Zhao, The role of oxygen vacancies of ABO3 perovskite oxides in the oxygen reduction reaction, Energy Environ. Sci. 13 (5) (2020) 1408-1428. [33] S. Gao, N. Liu, J. Liu, W.K. Chen, X.L. Liang, Y.Z. Yuan, Synthesis of higher alcohols by CO hydrogenation over catalysts derived from LaCo1-xMnxO3 perovskites: Effect of the partial substitution of Co by Mn, Fuel 261 (2020) 116415. [34] Tae-Wan, Kim, Catalytic conversion of syngas to higher alcohols over mesoporous perovskite catalysts, J. Ind. Eng. Chem. 51 (2017) 196-205. [35] Zijun, Wang, Co-Ni bimetal catalyst supported on perovskite-type oxide for steam reforming of ethanol to produce hydrogen, Int. J. Hydrog. Energy 39 (11) (2014) 5644-5652. [36] J.M. Wang, H.X. Zhong, K. An, Q. Liu, W. Jin, Y.Liu, Co-Ni alloy nanoparticles on La-doped SiO2 for direct ethanol synthesis from syngas, Ind. Eng. Chem. Res. 59 (44) (2020) 19539-19552. [37] Min, Ao, Perovskite-derived trimetallic Co-Ni-Cu catalyst for higher alcohol synthesis from syngas, Fuel Process. Technol. 193 (2019) 141-148. [38] Manman, Zhang, Effects of cobalt promoter and reduction temperature on the surface species and syngas adsorption of K-Co-Mo/C catalyst for mixed alcohols synthesis, J. Mol. Catal. A Chem. 395 (2014) 269-275. [39] J.X. Yong, X.B. Luan, X.P. Dai, X. Zhang, Y. Yang, H.H. Zhao, M.L. Cui, Z.T. Ren, F. Nie, X.L. Huang, Alkaline-etched NiMgAl trimetallic oxide-supported KMoS-based catalysts for boosting higher alcohol selectivity in CO hydrogenation, ACS Appl. Mater. Interfaces 11 (21) (2019) 19066-19076. [40] Yishuang, Wang, Influence of CoAl2O4 spinel and Co-phyllosilicate structures derived from Co/sepiolite catalysts on steam reforming of bio-oil for hydrogen production, Fuel 279 (2020) 118449. [41] T. Majima, E. Kono, S. Ogo, Y. Sekine, Pre-reduction and K loading effects on noble metal free Co-system catalyst for water gas shift reaction, Appl. Catal. A Gen. 523 (2016) 92-96. [42] M.Y. Wang, C.J. Jiang, X.W. Wang, P.F. Xian, H.G. Wang, Y. Yang, Existing form of Mo(VI) in acidic sulfate solution, Rare Met. 36 (7) (2017) 612-616. [43] Wenwen, Zhang, Effective promotion of oxygen reduction activity by rare earth doping in simple perovskite cathodes for intermediate-temperature solid oxide fuel cells, J. Power Sources 446 (2020) 227360. [44] Y.L. Zhu, W. Zhou, J. Yu, Y.B. Chen, M.L. Liu, Z.P.Shao, Enhancing electrocatalytic activity of perovskite oxides by tuning cation deficiency for oxygen reduction and evolution reactions, Chem. Mater. 28 (6) (2016) 1691-1697. [45] D.Y. Feng, Y.B. Dong, L.L. Zhang, X. Ge, W. Zhang, S. Dai, Z.A.Qiao, Holey lamellar high-entropy oxide as an ultra-high-activity heterogeneous catalyst for solvent-free aerobic oxidation of benzyl alcohol, Angewandte Chemie Int. Ed. 59 (44) (2020) 19503-19509. [46] Shaoxia, Guo, Oxygen vacancies boosted Co-Co2C catalysts for higher alcohols synthesis from syngas, Appl. Surf. Sci. 576 (2022) 151846. [47] T. Namiki, S. Yamashita, H. Tominaga, M.Nagai, Dissociation of CO and H2O during water-gas shift reaction on carburized Mo/Al2O3 catalyst, Appl. Catal. A Gen. 398 (1-2) (2011) 155-160. [48] V.M. Lebarbier, D.H. Mei, D.H. Kim, A. Andersen, J.L. Male, J.E. Holladay, R. Rousseau, Y.Wang, Effects of La2O3 on the mixed higher alcohols synthesis from syngas over Co catalysts: A combined theoretical and experimental study, J. Phys. Chem. C 115 (35) (2011) 17440-17451. [49] Z.L. Fan, W. Chen, X.l. Pan, X.H. Bao, Catalytic conversion of syngas into C2 oxygenates over Rh-based catalysts—effect of carbon supports, Catal. Today 147 (2) (2009) 86-93. [50] Z.Y. Song, X.P. Shi, H.Y. Ning, G.L. Liu, H.X. Zhong, Y.Liu, Loading clusters composed of nanoparticles on ZrO2 support via a perovskite-type oxide of La0.95Ce0.05Co0.7Cu0.3O3 for ethanol synthesis from syngas and its structure variation with reaction time, Appl. Surf. Sci. 405 (2017) 1-12. [51] Jingjuan, Wang, Structure and catalytic performance of alumina-supported copper-cobalt catalysts for carbon monoxide hydrogenation, J. Catal. 286 (2012) 51-61. [52] Z.S. Li, G.Y. Luo, T. Chen, Z. Zeng, S.X. Guo, J. Lv, S.Y. Huang, Y. Wang, X.B.Ma, Bimetallic CoCu catalyst derived from in situ grown Cu-ZIF-67 encapsulated inside KIT-6 for higher alcohol synthesis from syngas, Fuel 278 (2020) 118292. [53] K. Sun, M.H. Tan, Y.X. Bai, X.F. Gao, P. Wang, N.N. Gong, T. Zhang, G.H. Yang, Y.S.Tan, Design and synthesis of spherical-platelike ternary copper-cobalt-Manganese catalysts for direct conversion of syngas to ethanol and higher alcohols, J. Catal. 378 (2019) 1-16. [54] S.X. Guo, S.S. Li, H.X. Zhong, D.D. Gong, J.M. Wang, N. Kang, L.H. Zhang, G.L. Liu, Y.Liu, Mixed oxides confined and tailored cobalt nanocatalyst for direct ethanol synthesis from syngas: A catalyst designing by using perovskite-type oxide as the precursor, Ind. Eng. Chem. Res. 57 (6) (2018) 2404-2415. [55] V.V. Praveen Kumar, N. Prasad, S.Dey, Influence of metakaolin on strength and durability characteristics of ground granulated blast furnace slag based geopolymer concrete, Struct. Concr. 21 (3) (2020) 1040-1050. |
[1] | Jing Gao, Zhijun Ma, Fuli Liu, Cunxin Chen. Synthesis of carbon-coated cobalt ferrite core–shell structure composite: A method for enhancing electromagnetic wave absorption properties by adjusting impedance matching [J]. Chinese Journal of Chemical Engineering, 2022, 47(7): 206-217. |
[2] | Lijuan He, Cuimei Zhi, Lixia Ling, Riguang Zhang, Baojun Wang. Syngas to ethanol on MoCu(2 1 1) surface: Effect of promoter Mo on C—O bond breaking and C—C bond formation [J]. Chinese Journal of Chemical Engineering, 2022, 45(5): 78-89. |
[3] | Xiao Zhao, Xuan Shi, Zhongshun Chen, Long Xu, Chengyi Dai, Yazhou Zhang, Xinwen Guo, Dongyuan Yang, Xiaoxun Ma. Efficient conversion of benzene and syngas to toluene and xylene over ZnO-ZrO2&H-ZSM-5 bifunctional catalysts [J]. Chinese Journal of Chemical Engineering, 2022, 45(5): 203-210. |
[4] | Xinyu Chen, Shuo Shi, Ximei Han, Min Li, Ying Nian, Jing Sun, Wentao Zhang, Tianli Yue, Jianlong Wang. Insights into high-efficient removal of tetracycline by a codoped mesoporous carbon adsorbent [J]. Chinese Journal of Chemical Engineering, 2022, 44(4): 148-156. |
[5] | Guoxiao Cai, Wei Xiong, Susu Zhou, Pingle Liu, Yang Lv, Fang Hao, Hean Luo, ChangYi Kong. A multi-functional Ru Mo bimetallic catalyst for ultra-efficient C3 alcohols production from liquid phase hydrogenolysis of glycerol [J]. Chinese Journal of Chemical Engineering, 2022, 51(11): 199-215. |
[6] | Wang Du, Liping Ma, Jing Yang, Wei Zhang, Ran Ao. Experimental and numerical simulation of lignite chemical looping gasification with phosphogypsum as oxygen carrier in a fluidized bed [J]. Chinese Journal of Chemical Engineering, 2021, 37(9): 197-207. |
[7] | Ce Du, Linet Gapu Chizema, Emmerson Hondo, Mingliang Tong, Qingxiang Ma, Xinhua Gao, Ruiqin Yang, Peng Lu, Noritatsu Tsubaki. One-step conversion of syngas to light olefins over bifunctional metal-zeolite catalyst [J]. Chinese Journal of Chemical Engineering, 2021, 36(8): 101-110. |
[8] | Jie Wei, Maoshuai Li, Meiyan Wang, Shixiang Feng, Weikang Dai, Qi Yang, Yi Feng, Wanxin Yang, Cheng Yang, Xinbin Ma. Hydroformylation of formaldehyde to glycolaldehyde: An alternative synthetic route for ethylene glycol [J]. Chinese Journal of Chemical Engineering, 2021, 35(7): 3-16. |
[9] | Xuemei Wu, Minghui Tan, Bing Xu, Shengying Zhao, Qingxiang Ma, Yingluo He, Chunyang Zeng, Guohui Yang, Noritatsu Tsubaki, Yisheng Tan. Tuning the crystallite size of monoclinic ZrO2 to reveal critical roles of surface defects on m-ZrO2 catalyst for direct synthesis of isobutene from syngas [J]. Chinese Journal of Chemical Engineering, 2021, 35(7): 211-219. |
[10] | Lihua Qian, Guojun Lan, Xiaoyan Liu, Zhenqing Li, Ying Li. Aqueous-phase hydrogenation of levulinic acid over carbon layer protected silica-supported cobalt-ruthenium catalysts [J]. Chinese Journal of Chemical Engineering, 2021, 38(10): 114-122. |
[11] | Atif Abdalazeez, Wenju Wang, Siddig Abuelgasim. Syngas production from chemical looping reforming of ethanol over iron-based oxygen carriers: Theoretical analysis and experimental investigation [J]. Chinese Journal of Chemical Engineering, 2021, 38(10): 123-131. |
[12] | Xin Niu, Laihong Shen. Ca- and Mg-rich waste as high active carrier for chemical looping gasification of biomass [J]. Chinese Journal of Chemical Engineering, 2021, 38(10): 145-154. |
[13] | Lijuan Zhang, Peng Hu, Jiang Pan, Huilei Yu, Jianhe Xu. Immobilization of trophic anaerobic acetogen for semi-continuous syngas fermentation [J]. Chinese Journal of Chemical Engineering, 2021, 29(1): 311-316. |
[14] | Elaine C. Paris, João O. D. Malafatti, Henrique C. Musetti, Alexandra Manzoli, Alessandra Zenatti, Márcia T. Escote. Faujasite zeolite decorated with cobalt ferrite nanoparticles for improving removal and reuse in Pb2+ ions adsorption [J]. Chinese Journal of Chemical Engineering, 2020, 28(7): 1884-1890. |
[15] | Benyamin Shakib, Meisam Torab-Mostaedi, Mohammad Outokesh, Mehdi Asadollahzadeh. Direct extraction of Mo(VI) from sulfate solution by synergistic extractants in the rotation column [J]. Chinese Journal of Chemical Engineering, 2020, 28(2): 445-455. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||