[1] S. Zeng, B. Su, M.L. Zhang, Y. Gao, J. Liu, S. Luo, Q.M. Tao, Analysis and forecast of China’s energy consumption structure, Energy Policy 159 (2021) 112630. [2] G.Z. Yin, B. Li, F. Natalie, H.G. Patricia, K. Daniel M., M.S. Duan, Orderly retire China’s coal-fired power capacity via capacity payments to support renewable energy expansion, iScience 24 (11) (2021) 103287. [3] W.R. Zhang, M.J. Ren, J.J. Kang, Y.O. Zhou, Y.H. Yuan, Estimating stranded coal assets in China’s power sector, Utilities Policy 75 (2022) 101352. [4] X.K. Li, J.R. Han, Y. Liu, Z.H. Dou, T.A. Zhang, Summary of research progress on industrial flue gas desulfurization technology, Sep. Purif. Technol. 281 (2022) 119849. [5] Y. Yang, Y.T. Fan, H.L. Li, Y. Qi, W. Han, J.M. Dan, J.Y. Wang, Study on thermal decomposition process of semidry flue gas desulfurization ash, Energy Fuels 33 (9) (2019) 9023–9031. [6] Í.W.L. França, S.J.M. Cartaxo, M. Bastos-Neto, L.R.B. Gonçalves, F.A.N. Fernandes, Effect of additives to improve calcium-based sorbents in semi-dry flue gas desulphurization, Emiss. Control Sci. Technol. 6 (1) (2020) 105–112. [7] J.L. Du, K Yue, F Wu., X.X. Ma, Z.Q. Hui, Numerical investigation on the water vaporization during semi dry flue gas desulfurization in a three-dimensional spouted bed, Powder Technol. 383 (2021) 471–483. [8] A. Rahimi, M.S. Hatamipour, M. Gholami, M.R. Haghnegahdar, Non-isothermal modeling of the flue gas desulphurization process using a semi-dry spouted bed reactor, Chem. Eng. Res. Des. 89 (6) (2011) 777–784. [9] M. Ali Fakhari, A. Rahimi, M.S. Hatamipour, A. Fozooni, Non-isothermal modeling of simultaneous CO2 and SO2 removal in a semi-dry spouted bed reactor, Process. Saf. Environ. Prot. 98 (2015) 342–353. [10] F. Wu, K Yue, W. Gao, M. Gong, X.X. Ma, W.J. Zhou, Numerical simulation of semi-dry flue gas desulfurization process in the powder–particle spouted bed, Adv. Powder Technol. 31 (1) (2020) 323–331. [11] Q. Zhang, K.T. Gui, A novel semidry flue gas desulfurization process with the magnetically fluidized bed reactor, J. Hazard. Mater. 168 (2–3) (2009) 1341–1345. [12] H. Qin, K. Yang, B.Z. Sun, Q. Wang, C.H. Xu, Y.Q. Qi, Experimental study on spouted bed hydrodynamics for oil shale semi-coke, Energy Procedia 17 (2012) 1740–1746. [13] A. Niksiar, B. Nasernejad, Activated carbon preparation from pistachio shell pyrolysis and gasification in a spouted bed reactor, Biomass Bioenergy 106 (2017) 43–50. [14] H. Boujjat, S. Rodat, S. Chuayboon, S. Abanades, Numerical simulation of reactive gas–particle flow in a solar jet spouted bed reactor for continuous biomass gasification, Int. J. Heat Mass Transf. 144 (2019) 118572. [15] S.Y. Wang, L.Q. Zhao, C.S. Wang, Y.S. Liu, J.S. Gao, Y. Liu, Q.L. Cheng, Numerical simulation of gas–solid flow with two fluid model in a spouted-fluid bed, Particuology 14 (2014) 109–116. [16] S. Ando, T. Maki, Y. Nakagawa, N. Namiki, H. Emi, Y. Otani, Analysis of the drying process of seed particles in a spouted bed with a draft tube, Adv. Powder Technol. 13 (1) (2002) 73–91. [17] E.R. Monazam, R.W. Breault, J. Weber, K. Layfield, Minimum spouting velocity of flat-base spouted fluid bed, Particuology 36 (2018) 27–36. [18] M. Saidi, H.B. Tabrizi, J.R. Grace, A review on pulsed flow in gas–solid fluidized beds and spouted beds: Recent work and future outlook, Adv. Powder Technol. 30 (6) (2019) 1121–1130. [19] W. Gu, H.N. Li, S. Liu, Y. Zhou, Influence of a sound field on the flow pattern of hollow microbeads in a spout-fluidized bed with a draft tube, Powder Technol. 354 (2019) 211–217. [20] Y.M. Zhang, G.Q. Huang, G.L. Su, Hydrodynamic behavior of silicon particles with a wide size distribution in a draft tube spout-fluid bed, Chem. Eng. J. 328 (2017) 645–653. [21] S.H. Hosseini, M.J. Rezaei, M. Bag-Mohammadi, H. Altzibar, M. Olazar, Smart models to predict the minimum spouting velocity of conical spouted beds with non-porous draft tube, Chem. Eng. Res. Des. 138 (2018) 331–340. [22] F. Wu, W.W. Gao, J.J. Zhang, X.X. Ma, W.J. Zhou, Numerical analysis of gas–solid flow in a novel spouted bed structure under the longitudinal vortex effects, Chem. Eng. J. 334 (2018) 2105–2114. [23] F. Wu, C.L. Yang, X.X. Che, X.X. Ma, Y. Yan, W.J. Zhou, Numerical and experimental study of integral multi-jet structure impact on gas–solid flow in a 3D spout-fluidized bed, Chem. Eng. J. 393 (2020) 124737. [24] L.Y. Zhou, Y.Z. Zhao, CFD-DEM simulation of fluidized bed with an immersed tube using a coarse-grain model, Chem. Eng. Sci. 231 (2021) 116290. [25] K.K. Dwivedi, S. Dutta, C. Loha, M.K. Karmakar, P.K. Chatterjee, A numerical study on the wall erosion impact and gas–particle hydrodynamics in circulating fluidized bed riser, Therm. Sci. Eng. Prog. 22 (2021) 100852. [26] J.H. Song, T. Wang, J. Gao, X.B. Xiao, C.Q. Dong, X.Y. Hu, Erosion in the rectangular biomass circulating fluidized bed, Adv. Mater. Res. 608-609 (2012) 214–219. [27] Y.F. Liu, O. Hinrichsen, Numerical simulation of tube erosion in a bubbling fluidized bed with a dense tube bundle, Chem. Eng. Technol. 36 (4) (2013) 635–644. [28] X.W. Cao, N. Xiong, J. Li, Z.Q. Xie, X.R. Zang, J. Bian, Experimental study on the erosion of pipelines under different load conditions, Fluid Dyn. Mater. Process. 18 (2) (2022) 233–241. [29] M. Parsi, K. Najmi, F. Najafifard, S. Hassani, B. McLaury, S. Shirazi, A comprehensive review of solid particle erosion modeling for oil and gas wells and pipelines applications, J. Nat. Gas Sci. Eng. 21 (2014) 850–873. [30] Y. Zhang, E.P. Reuterfors, B.S. McLaury, S.A. Shirazi, E.F. Rybicki, Comparison of computed and measured particle velocities and erosion in water and air flows, Wear 263 (1–6) (2007) 330–338. [31] D. Timo, W. Tom, H. Stefan, MP-PIC simulation of circulating fluidized beds using an EMMS based drag model for Geldart B particles, Particuology 59 (2021) 76–90. [32] Q.Y. Tu, Z. Luo, H.G. Wang, MP-PIC simulation of the gas–solid full-loop flow characteristics in a dual fluidized bed and validation with experimental data, Chem. Eng. J. 421 (2021) 129835. [33] X.D. Liu, H. Zhang, H.R. Yang, Y. Zhang, J. Lyu, Validation and evaluation of the CPFD modeling of dense particle flow velocity: Taking particle flow around an obstacle as an example, Chem. Eng. J. 453 (2023) 139719. [34] S.L. Yang, F.H. Fan, Y.G. Wei, J.H. Hu, H. Wang, S.H. Wu, Three-dimensional MP-PIC simulation of the steam gasification of biomass in a spouted bed gasifier, Energy Convers. Manag. 210 (2020) 112689. [35] M.J. Andrews, P.J. O'Rourke, The multiphase particle-in-cell (MP-PIC) method for dense particulate flows, Int. J. Multiph. Flow 22 (2) (1996) 379–402. [36] L.T. Fan, C.Y. Wen, Mechanics of semifluidization of single size particles in solid–liquid systems, AIChE J. 7 (4) (1961) 606–610. [37] S. Dutta, C. Loha, P.K. Chatterjee, A.K. Sadhukhan, P. Gupta, Numerical investigation of gas–particle hydrodynamics in a vortex chamber fluidized bed, Adv. Powder Technol. 29 (12) (2018) 3357–3367. [38] B.H. Lee, Y.H. Bae, K.M. Kim, Y. Jiang, Y.H. Ahn, C.H. Jeon, Application of the CPFD method to analyze the effects of bed material density on gas–particle hydrodynamics and wall erosion in a CFB boiler, Fuel 342 (2023) 127878. [39] J. Xie, W.Q. Zhong, B.S. Jin, Y.J. Shao, Y.J. Huang, Eulerian–Lagrangian method for three-dimensional simulation of fluidized bed coal gasification, Adv. Powder Technol. 24 (1) (2013) 382–392. [40] M. Sosnowski, J. Krzywanski, K. Grabowska, R. Gnatowska, Polyhedral meshing in numerical analysis of conjugate heat transfer, EPJ Web Conf. 180 (2018) 02096. [41] M.H. Khan, M.A. Hussain, Z. Mansourpour, N. Mostoufi, N.M. Ghasem, E.C. Abdullah, CFD simulation of fluidized bed reactors for polyolefin production—A review, J. Ind. Eng. Chem. 20 (6) (2014) 3919–3946. [42] R. Thapa, A. Frohner, G. Tondl, C. Pfeifer, B. Halvorsen, Circulating fluidized bed combustion reactor: Computational particle fluid dynamic model validation and gas feed position optimization, Comput. Chem. Eng. 92 (2016) 180–188. [43] X.X. Che, F. Wu, X.X. Ma, Effect of adjusted mesoscale drag model on flue gas desulfurization in powder–particle spouted beds, Front. Chem. Sci. Eng. 16 (6) (2022) 909–920. |