[1] S.K. Hwang, S.J. Patil, N.R. Chodankar, Y.S. Huh, Y.K.Han, An aqueous high-performance hybrid supercapacitor with MXene and polyoxometalates electrodes, Chem. Eng. J. 427 (2022) 131854. [2] Z.Y. Wang, J.W. Chen, Y. Li, K. Dong, Y.H. Yu, EDL structure of ionic liquid-MXene-based supercapacitor and hydrogen bond role on the interface: a molecular dynamics simulation investigation, Phys. Chem. Chem. Phys. 24 (10) (2022) 5903–5913. [3] K. Nasrin, V. Sudharshan, M. Arunkumar, M. Sathish, 2D/2D nanoarchitectured Nb2C/Ti3C2 MXene heterointerface for high-energy supercapacitors with sustainable life cycle, ACS Appl. Mater. Interfaces 14 (18) (2022) 21038–21049. [4] Z.L. Zhao, X.M. Wu, C.Y. Luo, Y. Wang, W.X. Chen, Rational design of Ti3C2Cl2 MXenes nanodots-interspersed MXene@NiAl-layered double hydroxides for enhanced pseudocapacitor storage, J. Colloid Interface Sci. 609 (2022) 393–402. [5] Y.S.S. Sarma, N. Gupta, P. Bhattacharya, A composite electrode of 2D-Ti3C2 (MXene) and polyemeraldine salt of polyaniline for supercapacitor with high areal capacitance, Polym. Eng. Sci. 62 (6) (2022) 1918–1926. [6] Y.C. Chen, H.C. Yang, Z.J. Han, Z. Bo, J.H. Yan, K.F. Cen, K.K. Ostrikov, MXene-based electrodes for supercapacitor energy storage, Energy Fuels 36 (5) (2022) 2390–2406. [7] S. De, S. Acharya, C.K. Maity, S. Sahoo, G.C. Nayak, MXene (Ti3C2Tx)-/ amine-functionalized graphene-supported self-assembled Co9S8 nanoflower for ultrastable hybrid supercapacitor, Ind. Eng. Chem. Res. 61 (23) (2022) 7727–7738. [8] Y.Q. Xu, B. Pan, W.S. Li, L. Dong, X.P. Wang, F.G. Zhao, High-performance flexible asymmetric supercapacitor paired with Indanthrone@Graphene heterojunctions and MXene electrodes, ACS Appl. Mater. Interfaces 13 (35) (2021) 41537–41544. [9] M.R. Lukatskaya, O. Mashtalir, C.E. Ren, Y. Dall'Agnese, P. Rozier, P.L. Taberna, M. Naguib, P. Simon, M.W. Barsoum, Y. Gogotsi, Cation intercalation and high volumetric capacitance of two-dimensional titanium carbide, Science 341 (6153) (2013) 1502–1505. [10] M.Q. Zhao, C.E. Ren, Z. Ling, M.R. Lukatskaya, C.F. Zhang, K.L. Van Aken, M.W. Barsoum, Y. Gogotsi, Flexible MXene/carbon nanotube composite paper with high volumetric capacitance, Adv. Mater. 27 (2) (2015) 339–345. [11] J. Yan, C.E. Ren, K. Maleski, C.B. Hatter, B. Anasori, P. Urbankowski, A. Sarycheva, Y. Gogotsi, Flexible MXene/graphene films for ultrafast supercapacitors with outstanding volumetric capacitance, Adv. Funct. Mater. 27 (30) (2017) 1701264. [12] G.H. Zhang, H.C. Xuan, R. Wang, Y.Y. Guan, H.S. Li, X.H. Liang, P.D. Han, Y.C.Wu, Enhanced supercapacitive performance in Ni3S2/MnS composites via an ion-exchange process for supercapacitor applications, Electrochimica Acta 353 (2020) 136517. [13] B. Guan, Y. Li, B.Y. Yin, K.F. Liu, D.W. Wang, H.H. Zhang, C.J.Cheng, Synthesis of hierarchical NiS microflowers for high performance asymmetric supercapacitor, Chem. Eng. J. 308 (2017) 1165–1173. [14] Q.Y. Gao, X.Q. Wang, Z.Y. Shi, Z.R. Ye, W.C. Wang, N. Zhang, Z.L. Hong, M.J. Zhi, Synthesis of porous NiCo2S4 aerogel for supercapacitor electrode and oxygen evolution reaction electrocatalyst, Chem. Eng. J. 331 (2018) 185–193. [15] X.Y. Zhao, Q. Bi, C. Yang, K. Tao, L. Han, Design of trimetallic sulfide hollow nanocages from metal-organic frameworks as electrode materials for supercapacitors, Dalton Trans. 50 (42) (2021) 15260–15266. [16] S.M. de la Parra-Arciniega, N.A. García-Gómez, D.I. Garcia-Gutierrez, P. Salinas-Estevané, E.M.Sánchez, Ionic liquid assisted sonochemical synthesis of NiS submicron particles, Mater. Sci. Semicond. Process. 23 (2014) 7–13. [17] W.H. Luo, G.F. Zhang, Y.X. Cui, Y. Sun, Q. Qin, J. Zhang, W.J. Zheng, One-step extended strategy for the ionic liquid-assisted synthesis of Ni3S4-MoS2 heterojunction electrodes for supercapacitors, J. Mater. Chem. A 5 (22) (2017) 11278–11285. [18] Y. Pan, Y.Q. Liu, C.G. Liu, An efficient method for the synthesis of nickel phosphide nanocrystals via thermal decomposition of single-source precursors, RSC Adv. 5 (16) (2015) 11952–11959. [19] H. Li, X. Chen, E. Zalnezhad, K.N. Hui, K.S. Hui, M.J. Ko, 3D hierarchical transition-metal sulfides deposited on MXene as binder-free electrode for high-performance supercapacitors, J. Ind. Eng. Chem. 82 (2020) 309–316. [20] T. Zhu, G.X. Zhang, T. Hu, Z.N. He, Y.S. Lu, G.Q. Wang, H.B. Guo, J. Luo, C. Lin, Y.G. Chen, Synthesis of NiCo2S4-based nanostructured electrodes supported on nickel foams with superior electrochemical performance, J Mater Sci 51 (4) (2016) 1903–1913. [21] K. Krishnamoorthy, G.K. Veerasubramani, S. Radhakrishnan, S.J.Kim, One pot hydrothermal growth of hierarchical nanostructured Ni3S2 on Ni foam for supercapacitor application, Chem. Eng. J. 251 (2014) 116–122. [22] Y.Y. Luo, Y.P. Tian, Y. Tang, X.T. Yin, W.X. Que, 2D hierarchical nickel cobalt sulfides coupled with ultrathin titanium carbide (MXene) nanosheets for hybrid supercapacitors, J. Power Sources 482 (2021) 228961. [23] Q. Han, Y.L. Zhou, R. Du, B. Xiao, J.B. Cheng, M. Zhang, C.F. Dong, X.Q. Sun, F.Y. Jiang, J. Yang, Ti3C2Tx with a hydroxyl-rich surface for metal sulfides as high performance electrode materials for sodium/lithium storage, J. Mater. Chem. A 9 (24) (2021) 14013–14024. [24] Y. Tang, J.F. Zhu, W.L. Wu, C.H. Yang, W.J. Lv, F.Wang, Synthesis of nitrogen-doped two-dimensional Ti3C2 with enhanced electrochemical performance, J. Electrochem. Soc. 164 (4) (2017) A923–A929. [25] Y. Chen, C. Liu, S.E. Guo, T.C. Mu, L. Wei, Y.H. Lu, CO2 capture and conversion to value-added products promoted by MXene-based materials, Green Energy Environ. 7 (3) (2022) 394–410. [26] W. Yang, L.Q. Hou, P. Wang, Y. Li, R. Li, B. Jiang, F. Yang, Y.F. Li, High mass loading NiCo2O4 with shell-nanosheet/core-nanocage hierarchical structure for high-rate solid-state hybrid supercapacitors, Green Energy Environ. 7 (4) (2022) 723–733. [27] T.H. Xu, G.Y. Li, X.H. Yang, Z.X. Guo, L.J.Zhao, Design of the seamless integrated C@NiMn-OH-Ni3S2/Ni foam advanced electrode for supercapacitors, Chem. Eng. J. 362 (2019) 783–793. [28] Y.Y. Zhao, J. Guo, A.M. Liu, T.L. Ma, 2D heterostructure comprised of Ni3S2/d-Ti3C2 supported on Ni foam as binder-free electrode for hybrid supercapacitor, J. Alloys Compd. 814 (2020) 152271. [29] X.H. Xiong, B.T. Zhao, D. Ding, D.C. Chen, C.H. Yang, Y. Lei, M.L. Liu, One-step synthesis of architectural Ni3S2 nanosheet-on-nanorods array for use as high-performance electrodes for supercapacitors, NPG Asia Mater. 8 (8) (2016) e300. [30] Y.Y. Zheng, Y.R. Tian, S.X. Liu, X.Q. Tan, S.M. Wang, Q.P. Guo, J.J. Luo, Z.Y.Li, One-step microwave synthesis of NiO/NiS@CNT nanocomposites for high-cycling-stability supercapacitors, J. Alloys Compd. 806 (2019) 170–179. [31] J.H. Cao, S.Y. Yuan, H. Yin, Y.Y. Zhu, C. Li, M.Q. Fan, H.C. Chen, One-pot synthesis of porous nickel-Manganese sulfides with tuneable compositions for high-performance energy storage, J Sol-Gel Sci Technol 85 (3) (2018) 629–637. [32] M.M. Liang, M.S. Zhao, H.Y. Wang, J.F. Shen, X.P. Song, Enhanced cycling stability of hierarchical NiCo2S4@Ni(OH)2@PPy core-shell nanotube arrays for aqueous asymmetric supercapacitors, J. Mater. Chem. A 6 (6) (2018) 2482–2493. |