[1] B. Liu, Y. Zhao, Z. J. Lv, Y. B. Chen, Y. Zhang, M. N. Jia, Seasonal performance analysis of a new R134a alternative refrigerant for heat pump, J. Eng. Therm. 43 (12) (2022) 3177-3183 (in Chinese). [2] V.E. Denny, A.F. Mills, V.J. Jusionis, Laminar film condensation from a steam-air mixture undergoing forced flow down a vertical surface, J. Heat Transf. 93 (3) (1971) 297–304. [3] X.H. Ma, X.D. Zhou, Z. Lan, L.Y. Ming, Y. Zhang, Condensation heat transfer enhancement in the presence of non-condensable gas using the interfacial effect of dropwise condensation, Int. J. Heat Mass Transf. 51 (7–8) (2008) 1728–1737. [4] W.J. Minkowycz, E.M. Sparrow, Condensation heat transfer in the presence of noncondensables, interfacial resistance, superheating, variable properties, and diffusion, Int. J. Heat Mass Transf. 9 (10) (1966) 1125–1144. [5] J. W. Rose, Condensation of a vapour in the presence of a non-condensing gas, Int. J. Heat Mass Transf. 12 (2) (1969) 233–237. [6] G.H. Tang, H.W. Hu, Z.N. Zhuang, W.Q. Tao, Film condensation heat transfer on a horizontal tube in presence of a noncondensable gas, Appl. Therm. Eng. 36 (2012) 414–425. [7] J. Huang, J.X. Zhang, L. Wang, Review of vapor condensation heat and mass transfer in the presence of non-condensable gas, Appl. Therm. Eng. 89 (2015) 469–484. [8] Z. Yin, Y. L. Guo, B. Sunden, Q. W. Wang, M. Zeng, Numerical simulation of laminar film condensation in a horizontal minitube with and without non-condensable gas by the VOF method, Numer. Heat Transf. A Appl. 68 (9) (2015) 958–977. [9] Y. Gao, Numerical simulation of pure steam and steam with non-condensable gases condensation in vertical tubes, Shandong Univ., China, 2018 (in Chinese). [10] S.H. Geng, J.J. Dang, J. Zhao, J.N. Zhang, J.L. Sun, K. Qin, Numerical simulation of convective condensation of steam with large proportion of non-condensable gas under high pressure, J. Unmanned Undersea Syst. 29 (1) (2021) 88–96 (in Chinese). [11] A. Dehbi, F. Janasz, B. Bell, Prediction of steam condensation in the presence of noncondensable gases using a CFD-based approach, Nucl. Eng. Des. 258 (2013) 199–210. [12] M. Punetha, S. Khandekar, A CFD based modelling approach for predicting steam condensation in the presence of non-condensable gases, Nucl. Eng. Des. 324 (2017) 280–296. [13] L. Zhang, G. Zhang, W. Mao, Y. Zhang, J. Zhang, Experimental and numerical study on filmwise condensation of pure propane and propane/methane mixture, Int. J. Heat Mass Transf. 156 (2020) 119744. [14] C.W. Lee, J.S. Yoo, H.K. Cho, Multi-scale simulation of wall film condensation in the presence of non-condensable gases using heat structure-coupled CFD and system analysis codes, Nucl. Eng. Technol. 53 (8) (2021) 2488–2498. [15] F. Liu, Z.N. Sun, M. Ding, H.Z. Bian, Characteristics of helium stratification driven by steam condensation in the containment, J. Harbin Eng. Univ. 42 (12) (2021) 1786–1791 (in Chinese). [16] D.Y. Peng, D.B. Robinson, A new two-constant equation of state, Ind. Eng. Chem. Fundam. 15 (1) (1976) 59–64. [17] J.C. de la Rosa, L.E. Herranz, J.L. Munoz-Cobo, Analysis of the suction effect on the mass transfer when using the heat and mass transfer analogy, Nucl. Eng. Des. 239 (10) (2009) 2042–2055. [18] R. B. Bird, W. E. Stewart, E. N. Lightfoot, Transport Phenomena. Wiley and Sons Inc., New York, United State of America, 2002. [19] L. Chen, M. Leng, S. Ren, G. Liu, D. Wang, Application of EOS in calculation of gas and solid phase equilibrium, Contemp. Chem. Ind. 43 (6) (2014) 1121–1123, 1129 (in Chinese). [20] E.R. Gilliland, Multicomponent rectification. Estimation of the number of theoretical plates as a function of the reflux ratio, Ind. Eng. Chem. 32 (9) (1940) 1220–1223. [21] Inc. ANSYS, ANSYS FLUENT 14 User's Guide, 2011. [22] M.X. Li, Z.Q. Li, M. Chen, The temperature distribution profile shape of the heat exchanger, J. Jilin Inst. Chem. Technol. 13 (3) (1996) 4 (in Chinese). [23] X. Cheng, P. Bazin, P. Cornet, D. Hittner, J.D. Jackson, J. Lopez Jimenez, A. Naviglio, F. Oriolo, H. Petzold, Experimental data base for containment thermalhydraulic analysis, Nucl. Eng. Des. 204 (1–3) (2001) 267–284. |