Chinese Journal of Chemical Engineering ›› 2024, Vol. 68 ›› Issue (4): 165-180.DOI: 10.1016/j.cjche.2023.12.020
Previous Articles Next Articles
Xuexiang Fu, Xing Tang, Yi Xu, Xintao Zhou, Dengfeng Zhang
Received:
2023-08-28
Revised:
2023-11-21
Online:
2024-06-28
Published:
2024-04-28
Contact:
Dengfeng Zhang,Tel.:+86 871 65920242.E-mail address:plum0627@163.com
Supported by:
Xuexiang Fu, Xing Tang, Yi Xu, Xintao Zhou, Dengfeng Zhang
通讯作者:
Dengfeng Zhang,Tel.:+86 871 65920242.E-mail address:plum0627@163.com
基金资助:
Xuexiang Fu, Xing Tang, Yi Xu, Xintao Zhou, Dengfeng Zhang. Microwave irradiation-induced alterations in physicochemical properties and methane adsorption capability of coals: An experimental study using carbon molecular sieve[J]. Chinese Journal of Chemical Engineering, 2024, 68(4): 165-180.
Xuexiang Fu, Xing Tang, Yi Xu, Xintao Zhou, Dengfeng Zhang. Microwave irradiation-induced alterations in physicochemical properties and methane adsorption capability of coals: An experimental study using carbon molecular sieve[J]. 中国化学工程学报, 2024, 68(4): 165-180.
[1] T.A. Moore, Coalbed methane: a review, Int. J. Coal Geol. 101(2012) 36-81. [2] C.Q. Fu, Y. Du, W.L. Song, S.X. Sang, Z.J. Pan, N. Wang, Application of automated mineralogy in petroleum geology and development and CO2 sequestration: a review, Mar. Petrol. Geol. 151(2023) 106206. [3] Z.J. Pan, D.A. Wood, Coalbed methane (CBM) exploration, reservoir characterisation, production, and modelling: a collection of published research (2009-2015), J. Nat. Gas Sci. Eng. 26(2015) 1472-1484. [4] S.X. Sang, L. Yuan, S.Q. Liu, S.J. Han, Y.J. Zheng, T. Liu, X.Z. Zhou, R. Wang, Geological technology for carbon neutrality and its application prospect for low carbon coal exploitation and utilization, J. China Coal Soc. 47(2022) 1430-1451. (in Chinese). [5] X.G. Zhang, R. Pathegama Gamage, M.S.A. Perera, H.Q. A., A.S. Ranathunga, The influence of CO2 saturation time on the coal gas flow: fractured bituminous coal, Fuel 240(2019) 153-161. [6] Q.F. Jia, D.M. Liu, Y.D. Cai, Y.B. Yao, Y.J. Lu, Y.F. Zhou, Variation of adsorption effects in coals with different particle sizes induced by differences in microscopic adhesion, Chem. Eng. J. 452(2023) 139511. [7] X.X. Fu, D.F. Zhang, W.P. Jiang, Z.M. Lun, C.P. Zhao, H.T. Wang, Y.H. Li, Influence of physicochemical properties of coals on pore morphology and methane adsorption: a perspective, Chem. Ind. Eng. Prog. 38(2019) 2714-2725. (in Chinese). [8] X.X. Fu, Z.M. Lun, C.P. Zhao, X. Zhou, H.T. Wang, X.T. Zhou, Y. Xu, H. Zhang, D.F. Zhang, Influences of controlled microwave field irradiation on physicochemical property and methane adsorption and desorption capability of coals: implications for coalbed methane (CBM) production, Fuel 301(2021) 121022. [9] J.P. Zhou, G.J. Liu, Y.D. Jiang, X.F. Xian, Q.L. Liu, D.C. Zhang, J.Q. Tan, Supercritical carbon dioxide fracturing in shale and the coupled effects on the permeability of fractured shale: an experimental study, J. Nat. Gas Sci. Eng. 36(2016) 369-377. [10] J.H. Levy, S.J. Day, J.S. Killingley, Methane capacities of Bowen Basin coals related to coal properties, Fuel 76(9) (1997) 813-819. [11] A. Salmachi, M. Haghighi, Feasibility study of thermally enhanced gas recovery of coal seam gas reservoirs using geothermal resources, Energy Fuels 26(8) (2012) 5048-5059. [12] G. Xu, J.X. Huang, G.Z. Hu, N. Yang, J.Q. Zhu, P. Chang, Experimental study on effective microwave heating/fracturing of coal with various dielectric property and water saturation, Fuel Process. Technol. 202(2020) 106378. [13] Q.R. Liu, H. Xia, The effect of additive on temperature rising characteristics during coal pyrolysis in microwave field, Adv. Mater. Res. 512-515(2012) 1790-1794. [14] Y.D. Hong, B.Q. Lin, W. Nie, C.J. Zhu, Z. Wang, H. Li, Microwave irradiation on pore morphology of coal powder, Fuel 227(2018) 434-447. [15] J.X. Huang, G. Xu, Y.P. Liang, G.Z. Hu, P. Chang, Improving coal permeability using microwave heating technology-a review, Fuel 266(2020) 117022. [16] M.D. Sun, X. Zhao, Q. Liu, C.F. Ukaomah, S. Jiang, Q.H. Hu, Q.M. Wang, T.P. Blach, B.S. Yu, G. Cheng, Investigation of microwave irradiation stimulation to enhance the pore connectivity of shale, Energy Fuels 35(4) (2021) 3240-3251. [17] H.B. Zuo, S.Y. Long, C. Wang, P.C. Zhang, A review of microwave treatment on coal. 7th International Symposium on High-Temperature Metallurgical Processing. Cham: Springer International Publishing, (2016) 617-624. [18] Y.L. Zheng, Q.B. Zhang, J. Zhao, Effect of microwave treatment on thermal and ultrasonic properties of gabbro, Appl. Therm. Eng. 127(2017) 359-369. [19] Y. Xu, Z.M. Lun, Z.J. Pan, H.T. Wang, X. Zhou, C.P. Zhao, D.F. Zhang, Occurrence space and state of shale oil: a review, J. Petrol. Sci. Eng. 211(2022) 110183. [20] L.C. Ge, Y.W. Zhang, Z.H. Wang, J.H. Zhou, K.F. Cen, Effects of microwave irradiation treatment on physicochemical characteristics of Chinese low-rank coals, Energy Convers. Manag. 71(2013) 84-91. [21] J.X. Lu, H. Li, S.L. Shi, B.X. Huang, Y. Lu, M. Li, Q. Ye, Microwave-induced microstructure evolution of coal and its effects on the methane adsorption characteristic, Energy Fuels 35(5) (2021) 4081-4090. [22] Z.J. Wang, X.L. Li, X. Gao, D.Y. Chen, Z.G. Zhu, Experimental research on the influence of microwave radiation on coal permeability and microstructure, ACS Omega 6(50) (2021) 34375-34385. [23] H. Li, C.P. Xu, G.H. Ni, J.X. Lu, Y. Lu, S.L. Shi, M. Li, Q. Ye, Spectroscopic (FTIR, 1H NMR) and SEM investigation of physicochemical structure changes of coal subjected to microwave-assisted oxidant stimulation, Fuel 317(2022) 123473. [24] H. Li, S.L. Shi, B.Q. Lin, J.X. Lu, Q. Ye, Y. Lu, Z. Wang, Y.D. Hong, X.N. Zhu, Effects of microwave-assisted pyrolysis on the microstructure of bituminous coals, Energy 187(2019) 115986. [25] L.K. Zhang, T.H. Kang, J.T. Kang, X.Y. Zhang, B. Zhang, J.Q. Guo, Z.Y. Chai, Response of molecular structures and methane adsorption behaviors in coals subjected to cyclical microwave exposure, ACS Omega 6(47) (2021) 31566-31577. [26] Z.J. Wang, X.J. Wang, X.T. Ma, X.M. Li, Z.G. Zhu, Laboratory measurements of methane desorption behavior on coal under different modes of real-time microwave loading, Adsorption 26(1) (2020) 61-73. [27] H. Zarrin, D. Higgins, Y. Jun, Z.W. Chen, M. Fowler, Functionalized graphene oxide nanocomposite membrane for low humidity and high temperature proton exchange membrane fuel cells, J. Phys. Chem. C 115(42) (2011) 20774-20781. [28] V. Tozzini, V. Pellegrini, Reversible hydrogen storage by controlled buckling of graphene layers, J. Phys. Chem. C 115(51) (2011) 25523-25528. [29] S. Haydar, M.A. Ferro-Garcia, J. Rivera-Utrilla, J.P. Joly, Adsorption of p-nitrophenol on an activated carbon with different oxidations, Carbon 41(3) (2003) 387-395. [30] R. Muzyka, M. Kwoka, L. Smedowski, N. Diez, G. Gryglewicz, Oxidation of graphite by different modified Hummers methods, N. Carbon Mater. 32(1) (2017) 15-20. [31] A. Bhatnagar, W. Hogland, M. Marques, M. Sillanpaa, An overview of the modification methods of activated carbon for its water treatment applications, Chem. Eng. J. 219(2013) 499-511. [32] C. Sun, T. Chen, Q.X. Huang, J. Wang, S.Y. Lu, J.H. Yan, Enhanced adsorption for Pb(II) and Cd(II) of magnetic rice husk biochar by KMnO4 modification, Environ. Sci. Pollut. Res. Int. 26(9) (2019) 8902-8913. [33] N.Q. Zhao, N. Wei, J.J. Li, Z.J. Qiao, J. Cui, F. He, Surface properties of chemically modified activated carbons for adsorption rate of Cr (VI), Chem. Eng. J. 115(1-2) (2005) 133-138. [34] A.N A. El-Hendawy, Influence of HNO3 oxidation on the structure and adsorptive properties of corncob-based activated carbon, Carbon 41(4) (2003) 713-722. [35] Y.H. Li, C.W. Lee, B.K. Gullett, Importance of activated carbon's oxygen surface functional groups on elemental mercury adsorption, Fuel 82(4) (2003) 451-457. [36] N.C. Feng, W. Fan, M.L. Zhu, X.Y. Guo, Adsorption of Cd2+ in aqueous solutions using KMnO4-modified activated carbon derived from Astragalus residue, Trans. Nonferrous Metals Soc. China 28(4) (2018) 794-801. [37] S.L. Liu, X.X. Fu, Y. Xu, Z.M. Lun, C.P. Zhao, H.T. Wang, D.F. Zhang, Influence of water on nitrous oxide adsorption and desorption on coals, Ind. Eng. Chem. Res. 60(12) (2021) 4714-4726. [38] D.F. Zhang, S.L. Liu, X.X. Fu, S.Q. Jia, C.G. Min, Z.J. Pan, Adsorption and desorption behaviors of nitrous oxide on various rank coals: implications for oxy-coal combustion flue gas sequestration in deep coal seams, Energy Fuels 33(11) (2019) 11494-11506. [39] A. Liu, S.M. Liu, P. Liu, K. Wang, Water sorption on coal: effects of oxygen-containing function groups and pore structure, Int. J. Coal Sci. Technol. 8(5) (2021) 983-1002. [40] K.S.W. Sing, Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity (Provisional), Pure Appl. Chem. 54(11) (1982) 2201-2218. [41] Y. Toda, M. Hatami, S. Toyoda, Y. Yoshida, H. Honda. Micropore structure of coal, Fuel, 50(197) 187-200. [42] Q.Q. Wang, D.F. Zhang, H.H. Wang, W.P. Jiang, X.P. Wu, J. Yang, P.L. Huo, Influence of CO2 exposure on high-pressure methane and CO2 adsorption on various rank coals: implications for CO2 sequestration in coal seams, Energy Fuels 29(6) (2015) 3785-3795. [43] M.D. Sun, B.S. Yu, Q.H. Hu, Y.F. Zhang, B. Li, R. Yang, Y.B. Melnichenko, G. Cheng, Pore characteristics of Longmaxi shale gas reservoir in the Northwest of Guizhou, China: investigations using small-angle neutron scattering (SANS), helium pycnometry, and gas sorption isotherm, Int. J. Coal Geol. 171(2017) 61-68. [44] Y. Xu, Z.M. Lun, X. Zhou, G.L. Zhang, H.T. Wang, C.P. Zhao, H. Zhang, D.F. Zhang, Influences of microwave irradiation on pore, fracture and methane adsorption of deep shale, J. Nat. Gas Sci. Eng. 101(2022) 104489. [45] M.D. Sun, L.H. Zhang, Q.H. Hu, Z.J. Pan, B.S. Yu, L.W. Sun, L.F. Bai, L.D. Connell, Y.F. Zhang, G. Cheng, Pore connectivity and water accessibility in Upper Permian transitional shales, Southern China, Mar. Petrol. Geol. 107(2019) 407-422. [46] J. Zou, R. Rezaee, Y.J. Yuan, Investigation on the adsorption kinetics and diffusion of methane in shale samples, J. Petrol. Sci. Eng. 171(2018) 951-958. [47] J. Zou, R. Rezaee, Q. Xie, L.J. You, K.Q. Liu, A. Saeedi, Investigation of moisture effect on methane adsorption capacity of shale samples, Fuel 232(2018) 323-332. [48] D.F. Zhang, Y.J. Cui, B. Liu, S.G. Li, W.L. Song, W.G. Lin, Supercritical pure methane and CO2 adsorption on various rank coals of China: experiments and modeling, Energy Fuels 25(4) (2011) 1891-1899. [49] X.W. Cai, D.Y. Li, D.F. Zhang, Methane adsorption and desorption on a deep shale matrix under simulative reservoir temperature and pressure, Energy Fuels 36(19) (2022) 11888-11902. [50] R. Span, W. Wagner, A new equation of state for carbon dioxide covering the fluid region from the triple-point temperature to 1100 K at pressures up to 800 MPa, J. Phys. Chem. Ref. Data 25(6) (1996) 1509-1596. [51] X.X. Fu, C.P. Zhao, Z.M. Lun, H.T. Wang, M. Wang, D.F. Zhang, Influences of controlled microwave field radiation on pore structure, surface chemistry and adsorption capability of gas-bearing shales, Mar. Petrol. Geol. 130(2021) 105134. [52] Z.M. Lun, X. Zhou, X.X. Fu, X.W. Cai, Y. Xu, D.F. Zhang, Responses of pore structure parameters and functional group compositions of coals to irradiation power: implication to coalbed methane production via microwave irradiation, Energy Sources, Part A Recovery, Util. Environ. Eff. 44(3) (2022) 7709-7725. [53] R. Yang, S.L. Liu, H.T. Wang, Z.M. Lun, X. Zhou, C.P. Zhao, C.G. Min, H. Zhang, Y. Xu, D.F. Zhang, Influence of H2O on adsorbed CH4 on coal displaced by CO2 injection: implication for CO2 sequestration in coal seam with enhanced CH4 recovery (CO2-ECBM), Ind. Eng. Chem. Res. 60(43) (2021) 15817-15833. [54] H. Zhang, Z.C. Hu, Y. Xu, X.X. Fu, W. Li, D.F. Zhang, Impacts of long-term exposure to supercritical carbon dioxide on physicochemical properties and adsorption and desorption capabilities of moisture-equilibrated coals, Energy Fuels 35(15) (2021) 12270-12287. [55] Y. Song, Y.M. Zhu, W. Li, Structure evolution of oxygen functional groups in Dongsheng long flame coal by 13C-NMR and FTIR, J. Fuel Chem. Technol. 5(2015) 519-529. (in Chinese). [56] L. Perreux, A. Loupy, A tentative rationalization of microwave effects in organic synthesis according to the reaction medium, and mechanistic considerations, Tetrahedron 57(45) (2001) 9199-9223. [57] D. Dallinger, Mikrowellen in der organischen synthese, Chem. Unserer Zeit 47(6) (2013) 356-366. [58] E.L. Zodrow, J.A. D'Angelo, M. Mastalerz, C.J. Cleal, D. Keefe, Phytochemistry of the fossilized-cuticle frond Macroneuropteris macrophylla (Pennsylvanian seed fern, Canada), Int. J. Coal Geol. 84(2) (2010) 71-82. [59] Z.Y. Niu, G.J. Liu, H. Yin, D. Wu, C.C. Zhou, Investigation of mechanism and kinetics of non-isothermal low temperature pyrolysis of perhydrous bituminous coal by in situ FTIR, Fuel 172(2016) 1-10. [60] G.R. Gavalas, Coal Pyrolysis, New York: Elsevier Scientific Publishing Company, 1982. [61] X.Q. He, X.F. Liu, B.S. Nie, D.Z. Song, FTIR and Raman spectroscopy characterization of functional groups in various rank coals, Fuel 206(2017) 555-563. [62] G.S. Zhou, Q.X. Huang, B. Yu, H. Tong, Y. Chi, J.H. Yan, Effect of industrial microwave irradiation on the physicochemical properties and pyrolysis characteristics of lignite, Chin. J. Chem. Eng. 26(5) (2018) 1171-1178. [63] S. Brunauer, L.S. Deming, W.E. Deming, E. Teller, On a theory of the van der waals adsorption of gases, J. Am. Chem. Soc. 62(7) (1940) 1723-1732. [64] Z.C. Hu, D.F. Zhang, M. Wang, S.L. Liu, Influences of supercritical carbon dioxide fluid on pore morphology of various rank coals: a review, Energy Explor. Exploit. 38(5) (2020) 1267-1294. [65] D.F. Zhang, J. Zhang, P.L. Huo, Q.Q. Wang, H.H. Wang, W.P. Jiang, J. Tao, L. Zhu, Influences of SO2, NO, and CO2 exposure on pore morphology of various rank coals: implications for coal-fired flue gas sequestration in deep coal seams, Energy Fuels 30(7) (2016) 5911-5921. [66] J. Zou, R. Rezaee, Effect of particle size on high-pressure methane adsorption of coal, Petrol. Res. 1(1) (2016) 53-58. [67] Z.K. Li, X.Y. Wei, H.L. Yan, Z.M. Zong, Insight into the structural features of Zhaotong lignite using multiple techniques, Fuel 153(2015) 176-182. [68] T. Shi, X.F. Wang, J. Deng, Z.Y. Wen, The mechanism at the initial stage of the room-temperature oxidation of coal, Combust. Flame 140(4) (2005) 332-345. [69] Y.S. Huang, H. Hu, The interaction of perrhenate and acidic/basic oxygen-containing groups on biochar surface: a DFT study, Chem. Eng. J. 381(2020) 122647. [70] S.Y. Liu, Fundamental Study on Pyrolysis of Chinese Steam Coals and Model Compounds Containing Oxygen, Taiyuan University of Technology, 2004. (in Chinese). [71] M.D. Donohue, G.L. Aranovich, Adsorption hysteresis in porous solids, J. Colloid Interface Sci. 205(1) (1998) 121-130. [72] Y. Zhang, W.L. Xing, S.Y. Liu, Y. Liu, M.J. Yang, J.F. Zhao, Y.C. Song, Pure methane, carbon dioxide, and nitrogen adsorption on anthracite from China over a wide range of pressures and temperatures: experiments and modeling, RSC Adv. 5(65) (2015) 52612-52623. [73] M. Sudibandriyo, S.A. Mohammad, R.L. Robinson Jr, K.A.M. Gasem, Ono-kondo model for high-pressure mixed-gas adsorption on activated carbons and coals, Energy Fuels 25(7) (2011) 3355-3367. [74] H. Bi, Z.X. Jiang, J.Z. Li, P. Li, L. Chen, Q.H. Pan, Y.X. Wu, The Ono-Kondo model and an experimental study on supercritical adsorption of shale gas: a case study on Longmaxi shale in southeastern Chongqing, China, J. Nat. Gas Sci. Eng. 35(2016) 114-121. [75] S. Harpalani, B.K. Prusty, P. Dutta, Methane/CO2 sorption modeling for coalbed methane production and CO2 sequestration, Energy Fuels 20(4) (2006) 1591-1599. [76] S. Ozawa, S. Kusumi, Y. Ogino, Physical adsorption of gases at high pressure. IV. An improvement of the Dubinin-astakhov adsorption equation, J. Colloid Interface Sci. 56(1) (1976) 83-91. [77] S.W. Zhou, H.Q. Xue, Y. Ning, W. Guo, Q. Zhang, Experimental study of supercritical methane adsorption in Longmaxi shale: insights into the density of adsorbed methane, Fuel 211(2018) 140-148. [78] Y. Gensterblum, A. Merkel, A. Busch, B.M. Krooss, High-pressure CH4 and CO2 sorption isotherms as a function of coal maturity and the influence of moisture, Int. J. Coal Geol. 118(2013) 45-57. [79] R.H. Perry, D.W. Green, Perry's Chemical Engineers' Handbook (seventh ed.), New York: McGraw-Hill 1997. [80] X.F. Liu, X.Q. Jia, W. Liu, B.S. Nie, C.P. Zhang, D.Z. Song, Mechanical strength and porosity changes of bituminous coal induced by supercritical CO2 interactions: influence of saturation pressure, Geoenergy Sci. Eng. 225(2023) 211691. [81] X.F. Liu, X.Q. Jia, Y. Niu, B.S. Nie, C.P. Zhang, D.Z. Song, Alterations in coal mechanical properties and permeability influenced by liquid CO2 phase change fracturing, Fuel 354(2023) 129254. |
[1] | Zhi Hu, Jiahong Wang, Tongtong Sun. Tetraethylenepentamine-functionalized magnetic mesoporous composites as a novel adsorbent for the removal Cr(III)-ethylenediaminetetraacetic acid in complex solution [J]. Chinese Journal of Chemical Engineering, 2024, 68(4): 16-26. |
[2] | Xi Quan, Jun Zhang, Linlin Yin, Wei Zuo, Yu Tian. Selective adsorption of tetracycline by β-CD-immobilized sodium alginate aerogel coupled with ultrafiltration for reclaimed water [J]. Chinese Journal of Chemical Engineering, 2024, 68(4): 27-34. |
[3] | Xing Zhong, Yubin Tan, Siyuan Wu, Caixia Hu, Kai Guo, Yongchuan Wu, Neng Yu, Mingyang Ma, Ying Dai. Efficient and rapid capture of uranium(VI) in wastewater via multi-amine modified β-cyclodextrin porous polymer [J]. Chinese Journal of Chemical Engineering, 2024, 68(4): 144-155. |
[4] | Yifang Mi, Wenqiang Wang, Sen Zhang, Yalong Guo, Yufeng Zhao, Guojin Sun, Zhihai Cao. Ultra-high specific surface area activated carbon from Taihu cyanobacteria via KOH activation for enhanced methylene blue adsorption [J]. Chinese Journal of Chemical Engineering, 2024, 67(3): 106-116. |
[5] | Shunda lin, Yang Lu, Lin Zheng, Ling Long, Xuguang Jiang, Jianhua Yan. Mechanism study of Cu(II) adsorption from acidic wastewater by ultrasonic-modified municipal solid waste incineration fly ash [J]. Chinese Journal of Chemical Engineering, 2024, 67(3): 157-165. |
[6] | Siang Chen, Wenling Wu, Zhaoyang Niu, Deqi Kong, Wenbin Li, Zhongli Tang, Donghui Zhang. High adsorption selectivity of activated carbon and carbon molecular sieve boosting CO2/N2 and CH4/N2 separation [J]. Chinese Journal of Chemical Engineering, 2024, 67(3): 282-297. |
[7] | Jinhuang Cai, Shijie Hao, Yun Zhang, Xiaomin Wu, Zhenguo Li, Huawang Zhao. Co3O4 as an efficient passive NOx adsorber for emission control during cold-start of diesel engines [J]. Chinese Journal of Chemical Engineering, 2024, 66(2): 1-7. |
[8] | Kang He, Liangyu Zhu, Yanmei Wang. Dual-functional poly(2-methyl-2-oxazoline)/poly(2-(dimethylamine)ethyl methacrylate) mixed brushes with switchable protein adsorption and antibacterial properties [J]. Chinese Journal of Chemical Engineering, 2024, 66(2): 19-30. |
[9] | Haozhe Yi, Taotao Fu, Chunying Zhu, Youguang Ma. The flow behavior of droplet adsorption on a liquid–liquid interface accompanied by cross-linking reaction and phase separation in a microchannel [J]. Chinese Journal of Chemical Engineering, 2024, 66(2): 60-70. |
[10] | Zhuang Liu, Bo Gao, Haoyuan Han, Yuling Li, Haiyang Fu, Donghui Wei. A green cross-linking method for the preparation of renewable three-dimensional graphene sponges for efficient adsorption of Congo red dye [J]. Chinese Journal of Chemical Engineering, 2024, 66(2): 84-93. |
[11] | Risheng Shen, Shilong Li, Yuqing Sun, Yuan Bai, Jian Lu, Wenheng Jing. Flower-like tin oxide membranes with robust three-dimensional channels for efficient removal of iron ions from hydrogen peroxide [J]. Chinese Journal of Chemical Engineering, 2024, 65(1): 1-7. |
[12] | Yixuan Ma, Cong Yu, Lifeng Yang, Rimin You, Yawen Bo, Qihan Gong, Huabin Xing, Xili Cui. Boosting kinetic separation of ethylene and ethane on microporous materials via crystal size control [J]. Chinese Journal of Chemical Engineering, 2024, 65(1): 85-91. |
[13] | Binxuan Zhou, Jingcai Chang, Jun Li, Jinglan Hong, Tao Wang, Liqiang Zhang, Ping Zhou, Chunyuan Ma. Study of the reaction mechanism for preparing powdered activated coke with SO2 adsorption capability via one-step rapid activation method under flue gas atmosphere [J]. Chinese Journal of Chemical Engineering, 2024, 65(1): 158-168. |
[14] | Mohamed Mobarak, Saleh Qaysi, Mohamed Saad Ahmed, Yasser F. Salama, Ahmed Mohamed Abbass, Mohamed Abd Elrahman, Hamdy A. Abdel-Gawwad, Moaaz K. Seliem. Insights into the adsorption performance and mechanism of Cr(VI) onto porous nanocomposite prepared from gossans and modified coal interface: Steric, energetic, and thermodynamic parameters interpretations [J]. Chinese Journal of Chemical Engineering, 2023, 61(9): 118-128. |
[15] | Liu He, Yiyang Qiu, Chu Yao, Guojun Lan, Na Li, Huacong Zhou, Quansheng Liu, Xiucheng Sun, Zaizhe Cheng, Ying Li. Role of intrinsic defects on carbon adsorbent for enhanced removal of Hg2+ in aqueous solution [J]. Chinese Journal of Chemical Engineering, 2023, 61(9): 129-139. |
Viewed | ||||||||||||||||||||||||||||||||||
Full text 96
|
|
|||||||||||||||||||||||||||||||||
Abstract |
|
|||||||||||||||||||||||||||||||||