Chinese Journal of Chemical Engineering ›› 2024, Vol. 68 ›› Issue (4): 181-192.DOI: 10.1016/j.cjche.2023.12.008
Previous Articles Next Articles
Zhourong Xiao1, Changxuan Zhang1, Peng Li1, Desong Wang1, Xiangwen Zhang2, Li Wang2, Jijun Zou2, Guozhu Li2
Received:
2023-08-11
Revised:
2023-11-04
Online:
2024-06-28
Published:
2024-04-28
Contact:
Zhourong Xiao,E-mail address:xiaozhourong1234@163.com;Guozhu Li,E-mail address:gzli@tju.edu.cn
Supported by:
Zhourong Xiao1, Changxuan Zhang1, Peng Li1, Desong Wang1, Xiangwen Zhang2, Li Wang2, Jijun Zou2, Guozhu Li2
通讯作者:
Zhourong Xiao,E-mail address:xiaozhourong1234@163.com;Guozhu Li,E-mail address:gzli@tju.edu.cn
基金资助:
Zhourong Xiao, Changxuan Zhang, Peng Li, Desong Wang, Xiangwen Zhang, Li Wang, Jijun Zou, Guozhu Li. Engineering oxygen vacancies on Tb-doped ceria supported Pt catalyst for hydrogen production through steam reforming of long-chain hydrocarbon fuels[J]. Chinese Journal of Chemical Engineering, 2024, 68(4): 181-192.
Zhourong Xiao, Changxuan Zhang, Peng Li, Desong Wang, Xiangwen Zhang, Li Wang, Jijun Zou, Guozhu Li. Engineering oxygen vacancies on Tb-doped ceria supported Pt catalyst for hydrogen production through steam reforming of long-chain hydrocarbon fuels[J]. 中国化学工程学报, 2024, 68(4): 181-192.
[1] Q.C. Zheng, Z.R. Xiao, J.S. Xu, L. Pan, X.W. Zhang, J.J. Zou, Catalytic steam reforming and heat sink of high-energy-density fuels: Correlation of reaction behaviors with molecular structures, Fuel 286(2021) 119371. [2] Q.J. Fu, K. Yan, Z.G. Du, N. Li, Research progress of endothermic hydrocarbon fuels, J. Rocket. Propuls. 31(5) (2005) 32-36. [3] C.L. Zhu, X.W. Ning, Y.Z. Liu, Integrated thermal management system for hypersonic aircraft, in: Proceedings of the first conference on modern aerodynamics and aerothermodynamics in China, (2006) 351-355. [4] G.L. Xu, S. Chen, C.T. Wu, N.F. Tang, Q.H. Shang, Y. Cong, Ethanol assisted catalytic endothermic reaction of hydrocarbon fuel, Chin. J. Energ. Mater. 28(2020) 416-423. (in Chinese). [5] T.H. Jia, Y.B. Yu, Q. Liu, Y. Yang, J.J. Zou, X.W. Zhang, L. Pan, Theoretical and experimental study on the inhibition of jet fuel oxidation by diarylamine, Chin. J. Chem. Eng. 56(2023) 225-232. [6] Z.R. Xiao, Q.C. Zheng, X.W. Zhang, L. Li, L. Wang, G.Z. Li, Synthesis of Ni-co catalysts supported on flower-like MgAl composite oxide for hydrogen production by n-dodecane steam reforming, Chin. J. Inorg. Chem. 37(4) (2021) 629-637. [7] H.C. Zhang, Z.R. Xiao, M. Yang, Y.J. Tian, G.Z. Li, X.W. Zhang, G.Z. Liu, Catalytic steam reforming of JP-10 over Ni/SBA-15, Int. J. Hydrog. Energy 45(7) (2020) 4284-4296. [8] Y.N. Wang, R.J. Zhang, B.H. Yan, Ni/Ce0.9Eu0.1O1.95 with enhanced coke resistance for dry reforming of methane, J. Catal. 407(2022) 77-89. [9] Y.M. Zhang, R.M. Zeng, Y. Zu, L.H. Zhu, Y. Mei, Y.M. Luo, D.D. He, Low-temperature dry reforming of methane tuned by chemical speciations of active sites on the SiO2 and γ-Al2O3 supported Ni and Ni-Ce catalysts, Chin. J. Chem. Eng. 48(2022) 76-90. [10] M. Koike, D.L. Li, Y. Nakagawa, K. Tomishige, A highly active and coke-resistant steam reforming catalyst comprising uniform nickel-iron alloy nanoparticles, ChemSusChem 5(12) (2012) 2312-2314. [11] D.L. Li, M. Koike, L. Wang, Y. Nakagawa, Y. Xu, K. Tomishige, Regenerability of hydrotalcite-derived nickel-iron alloy nanoparticles for syngas production from biomass tar, ChemSusChem 7(2) (2014) 510-522. [12] D.L. Li, M. Tamura, Y. Nakagawa, K. Tomishige, Metal catalysts for steam reforming of tar derived from the gasification of lignocellulosic biomass, Bioresour. Technol. 178(2015) 53-64. [13] C. Xie, Y.S. Chen, M.H. Engelhard, C.S. Song, Comparative study on the sulfur tolerance and carbon resistance of supported noble metal catalysts in steam reforming of liquid hydrocarbon fuel, ACS Catal. 2(6) (2012) 1127-1137. [14] T.B. Shoynkhorova, P.A. Simonov, D.I. Potemkin, P.V. Snytnikov, V.D. Belyaev, A.V. Ishchenko, D.A. Svintsitskiy, V.A. Sobyanin, Highly dispersed Rh-, Pt-, Ru/Ce0.75Zr0.25O2-δ catalysts prepared by sorption-hydrolytic deposition for diesel fuel reforming to syngas, Appl. Catal. B Environ. 237(2018) 237-244. [15] T. Kim, K.H. Song, H. Yoon, J.S. Chung, Steam reforming of n-dodecane over K2Ti2O5-added Ni-alumina and Ni-zirconia (YSZ) catalysts, Int. J. Hydrog. Energy 41(40) (2016) 17922-17932. [16] T. Kim, Y.S. Chung, J.G. Sung, H. Kim, S. Park, H.K. Jung, S. Park, W.B. Kim, J.S. Chung, n-Dodecane steam reforming over Ni catalysts supported on ZrO2-KNbO3, J. Power Sources 479(2020) 228834. [17] V.S. Guggilla, J. Akyurtlu, A. Akyurtlu, I. Blankson, Steam reforming of n-dodecane over Ru-Ni-based catalysts, Ind. Eng. Chem. Res. 49(17) (2010) 8164-8173. [18] Y.S. Wang, N. Li, M.Q. Chen, D.F. Liang, C. Li, Q. Liu, Z.L. Yang, J. Wang, Glycerol steam reforming over hydrothermal synthetic Ni-Ca/attapulgite for green hydrogen generation, Chin. J. Chem. Eng. 48(2022) 176-190. [19] M.Q. Chen, X.Y. Feng, Y.S. Wang, D.F. Liang, C. Li, Z.L. Yang, J. Wang, Ethanol steam reforming over attapulgite-based MCM-41 supported Ni-Ce-Zr catalyst for hydrogen production, Fuel 346(2023) 128373. [20] Y.Z. Wang, S.S. Zhu, J.C. Lu, S.F. He, H.H. Lu, D. Song, D.K. Chen, Y.M. Luo, Novel nanowire self-assembled hierarchical CeO2 microspheres loaded with nickel-based catalysts for hydrogen production from steam reforming of glycerol, Fuel Process. Technol. 243(2023) 107677. [21] A. Umar, D. Neagu, J.T.S. Irvine, Renewable syngas & hydrogen synthesis via steam reforming of glycerol over ceria-mediated exsolved metal nano catalysts, Int. J. Hydrog. Energy 48(70) (2023) 27137-27150. [22] Q.Q. Xue, Z.W. Li, M. Chen, Y.J. Wang, B.H. Yan, G.S. Luo, Co-precipitation continuous synthesis of the Ni-Rh-Ce0.75Zr0.25O2-δ catalyst in the membrane dispersion microreactor system for n-dodecane steam reforming to hydrogen, Fuel 297(2021) 120785. [23] Y.H. Wang, J.C. Zhang, Hydrogen production on Ni-Pd-Ce/γ-Al2O3 catalyst by partial oxidation and steam reforming of hydrocarbons for potential application in fuel cells, Fuel 84(14-15) (2005) 1926-1932. [24] T. Suzuki, H.I. Iwanami, T. Yoshinari, Steam reforming of kerosene on Ru/Al2O3 catalyst to yield hydrogen, Int. J. Hydrog. Energy 25(2) (2000) 119-126. [25] H. Iida, N. Onuki, T. Numa, A. Igarashi, Steam reforming of dodecane and toluene over Ru/12SrO-7Al2O3(S12A7) catalysts, Fuel Process. Technol. 142(2016) 397-402. [26] Y. Lu, J.C. Chen, Y. Liu, Q.S. Xue, M.Y. He, Highly sulfur-tolerant Pt/Ce0.8Gd0.2O1.9 catalyst for steam reforming of liquid hydrocarbons in fuel cell applications, J. Catal. 254(1) (2008) 39-48. [27] S. Ji, Z.R. Xiao, H.C. Zhang, L. Li, G.Z. Li, L. Wang, G.Z. Liu, Catalytic steam reforming of n-dodecane over high surface area Ce0.75Zr0.25O2 supported Ru catalysts, Int. J. Hydrog. Energy 42(49) (2017) 29484-29497. [28] J.Y. Liu, Z.R. Xiao, X.W. Zhang, Pt and ceria promoted Ni/SBA-15 for n-dodecane steam reforming for hydrogen production, Chem. Ind. Eng. 36(2019) 1-10. (in Chinese). [29] M. Miyamoto, M. Arakawa, Y. Oumi, S. Uemiya, Influence of metal cation doping on Ru/CeO2/Al2O3 catalyst for steam reforming of desulfurized kerosene, Int. J. Hydrog. Energy 40(6) (2015) 2657-2662. [30] A. Vita, C. Italiano, C. Fabiano, L. Pino, M. Lagana, V. Recupero, Hydrogen-rich gas production by steam reforming of n-dodecane, Appl. Catal. B Environ. 199(2016) 350-360. [31] Z.R. Xiao, S. Ji, F. Hou, Y.T. Li, H.C. Zhang, L. Wang, X.W. Zhang, G.Z. Liu, J.J. Zou, G.Z. Li, n-Dodecane steam reforming catalyzed by Ni-Ce-Pr catalysts. Part 1: Catalyst preparation and Pr doping, Catal. Today 316(2018) 78-90. [32] Z.R. Xiao, S. Ji, Y.T. Li, F. Hou, H.C. Zhang, X.W. Zhang, L. Wang, G.Z. Li, Tuning oxygen vacancies on mesoporous ceria nanorods by metal doping: Controllable magnetic property, Appl. Surf. Sci. 455(2018) 1037-1044. [33] Z.R. Xiao, X.W. Zhang, F. Hou, C. Wu, L. Wang, G.Z. Li, Tuning metal-support interaction and oxygen vacancies of ceria supported nickel catalysts by Tb doping for n-dodecane steam reforming, Appl. Surf. Sci. 503(2020) 144319. [34] Z.R. Xiao, Y.T. Li, F. Hou, C. Wu, L. Pan, J.J. Zou, L. Wang, X.W. Zhang, G.Z. Liu, G.Z. Li, Engineering oxygen vacancies and nickel dispersion on CeO2 by Pr doping for highly stable ethanol steam reforming, Appl. Catal. B Environ. 258(2019) 117940. [35] Z.R. Xiao, C. Wu, L. Wang, J.S. Xu, Q.C. Zheng, L. Pan, J.J. Zou, X.W. Zhang, G.Z. Li, Boosting hydrogen production from steam reforming of ethanol on nickel by lanthanum doped ceria, Appl. Catal. B Environ. 286(2021) 119884. [36] Z.R. Xiao, X.W. Zhang, L. Wang, G.Z. Li, Optimizing the preparation of Ni-Ce-Pr catalysts for efficient hydrogen production by n-dodecane steam reforming, Int. J. Energy Res. 44(3) (2020) 1828-1842. [37] L. Li, Z.Y. Shang, Z.R. Xiao, L. Wang, X.H. Liang, G.Z. Liu, Steam reforming of n-dodecane over mesoporous alumina supported nickel catalysts: Effects of metal-support interaction on nickel catalysts, Int. J. Hydrog. Energy 44(13) (2019) 6965-6977. [38] X.Q. Hu, J. Huang, Y. Cao, B. He, X. Cui, Y.H. Zhu, Y. Wang, Y.H. Chen, Y.K. Yang, Z. Li, X.Q. Liu, Photothermal-boosted polaron transport in Fe2O3 photoanodes for efficient photoelectrochemical water splitting, Carbon Energy 5(9) (2023) e369. [39] B.B. Jiang, J. Iocozzia, L. Zhao, H.F. Zhang, Y.W. Harn, Y.H. Chen, Z.Q. Lin, Barium titanate at the nanoscale: Controlled synthesis and dielectric and ferroelectric properties, Chem. Soc. Rev. 48(4) (2019) 1194-1228. [40] W.H. Tang, K.W. Teng, W.G. Guo, F. Gu, B.Y. Li, R.Y. Qi, R.P. Liu, Y.Y. Lin, M.M. Wu, Y.H. Chen, Defect-engineered Co3O4@Nitrogen-deficient graphitic carbon nitride as an efficient bifunctional electrocatalyst for high-performance metal-air batteries, Small 18(27) (2022) 2202194. [41] L. Li, S.W. Zuo, P.F. An, H.Y. Wu, F. Hou, G.Z. Li, G.Z. Liu, Hydrogen production via steam reforming of n-dodecane over NiPt alloy catalysts, Fuel 262(2020) 116469. [42] D. Harshini, D.H. Lee, J. Jeong, Y. Kim, S.W. Nam, H.C. Ham, J.H. Han, T.H. Lim, C.W. Yoon, Enhanced oxygen storage capacity of Ce0.65Hf0.25M0.1O2-δ (M=rare earth elements): Applications to methane steam reforming with high coking resistance, Appl. Catal. B Environ. 148-149(2014) 415-423. [43] G. Niu, E. Hildebrandt, M.A. Schubert, F. Boscherini, M.H. Zoellner, L. Alff, D. Walczyk, P. Zaumseil, I. Costina, H. Wilkens, T. Schroeder, Oxygen vacancy induced room temperature ferromagnetism in Pr-doped CeO2 thin films on silicon, ACS Appl. Mater. Interfaces 6(20) (2014) 17496-17505. [44] B. Safavinia, Y.M. Wang, C.Y. Jiang, C. Roman, P. Darapaneni, J. Larriviere, D.A. Cullen, K.M. Dooley, J.A. Dorman, Enhancing CexZr1-xO2 activity for methane dry reforming using subsurface Ni dopants, ACS Catal. 10(7) (2020) 4070-4079. [45] A. Cardenas-Arenas, A. Quindimil, A. Davo-Quinonero, E. Bailon-Garcia, D. Lozano-Castello, U. De-La-Torre, B. Pereda-Ayo, J.A. Gonzalez-Marcos, J.R. Gonzalez-Velasco, A. Bueno-Lopez, Design of active sites in Ni/CeO2 catalysts for the methanation of CO2: Tailoring the Ni-CeO2 contact, Appl. Mater. Today 19(2020) 100591. [46] F.G. Wang, W.J. Cai, H. Provendier, Y. Schuurman, C. Descorme, C. Mirodatos, W.J. Shen, Hydrogen production from ethanol steam reforming over Ir/CeO2 catalysts: Enhanced stability by PrOx promotion, Int. J. Hydrog. Energy 36(21) (2011) 13566-13574. [47] P. Li, S.L. Zhang, Z.R. Xiao, H. Zhang, F. Ye, J.M. Gu, J.D. Wang, G.Z. Li, D.S. Wang, Ni-TiO2 catalysts derived from metal-organic framework for efficient photo-thermal CO2 methanation, Fuel 357(2024) 129817. [48] L. Pino, C. Italiano, A. Vita, M. Lagana, V. Recupero, Ce0.70La0.20Ni0.10O2-δ catalyst for methane dry reforming: Influence of reduction temperature on the catalytic activity and stability, Appl. Catal. B Environ. 218(2017) 779-792. [49] Z.C. Wen, R. Lu, F. Gu, K. Zheng, L.J. Zhang, H.L. Jin, Y.H. Chen, S. Wang, S. Pan, Enabling efficient blue-emissive circularly polarized luminescence by in situ crafting of chiral quasi-2D perovskite nanosheets within polymer nanofibers, Adv. Funct. Mater. 33(7) (2023) 2212095. [50] K. Zheng, F. Gu, H.J. Wei, L.J. Zhang, X.A. Chen, H.L. Jin, S. Pan, Y.H. Chen, S. Wang, Flexible, permeable, and recyclable liquid-metal-based transient circuit enables contact/noncontact sensing for wearable human-machine interaction, Small Methods 7(4) (2023) e2201534. [51] X.H. Yu, S.C. Zhang, L.Q. Wang, Q. Jiang, S.G. Li, Z. Tao, Hydrogen production from steam reforming of kerosene over Ni-La and Ni-La-K/cordierite catalysts, Fuel 85(12-13) (2006) 1708-1713. [52] M. Sugisawa, K. Takanabe, M. Harada, J. Kubota, K. Domen, Effects of La addition to Ni/Al2O3 catalysts on rates and carbon deposition during steam reforming of n-dodecane, Fuel Process. Technol. 92(1) (2011) 21-25. [53] Y. Guo, H.B. Li, L. Jia, H. Kameyama, Trace Ru-doped anodic alumina-supported Ni catalysts for steam reforming of kerosene: Activity performance and electrical-heating possibility, Fuel Process. Technol. 92(12) (2011) 2341-2347. [54] J. Zheng, J.J. Strohm, C.S. Song, Steam reforming of liquid hydrocarbon fuels for micro-fuel cells. Pre-reforming of model jet fuels over supported metal catalysts, Fuel Process. Technol. 89(4) (2008) 440-448. [55] S. Lee, M. Bae, J. Bae, S.P. Katikaneni, Ni-Me/Ce0.9Gd0.1O2-x (Me: Rh, Pt and Ru) catalysts for diesel pre-reforming, Int. J. Hydrog. Energy 40(8) (2015) 3207-3216. [56] D. Li, L. Zeng, X.Y. Li, X. Wang, H.Y. Ma, S. Assabumrungrat, J.L. Gong, Ceria-promoted Ni/SBA-15 catalysts for ethanol steam reforming with enhanced activity and resistance to deactivation, Appl. Catal. B Environ. 176-177(2015) 532-541. [57] H.C. Zhang, Z.R. Xiao, M. Yang, J.J. Zou, G.Z. Liu, X.W. Zhang, Highly dispersible cerium-oxide modified Ni/SBA-15 for steam reforming of bio-mass based JP10, Chin. J. Chem. Eng. 43(2022) 255-265. |
[1] | Peng Jiang, Hao Zhang, Guanhan Zhao, Lin Li, Tuo Ji, Liwen Mu, Xiaohua Lu, Jiahua Zhu. A thermodynamic view on the in-situ carbon dioxide reduction by biomass-derived hydrogen during calcium carbonate decomposition [J]. Chinese Journal of Chemical Engineering, 2024, 68(4): 231-240. |
[2] | Yunyu Guo, Yiran Wang, Shu Zhang, Yi Wang, Song Hu, Jun Xiang, Walid Nabgan, Xun Hu. Steam reforming of acetic acid over Ni/biochar of low metal-loading: Involvement of biochar in tailoring reaction intermediates renders superior catalytic performance [J]. Chinese Journal of Chemical Engineering, 2024, 68(4): 241-252. |
[3] | Porapak Suriya, Shanshan Xu, Shengzhe Ding, Sarayute Chansai, Yilai Jiao, Joseph Hurd, Daniel Lee, Yuxin Zhang, Christopher Hardacre, Prasert Reubroycharoen, Xiaolei Fan. Ethanol steam reforming over Ni/ZSM-5 nanosheet for hydrogen production [J]. Chinese Journal of Chemical Engineering, 2024, 67(3): 247-256. |
[4] | Yi-Fei Liang, Jin-Rong Lu, Shang-Kun Tian, Wen-Quan Cui, Li Liu. Pt nanoclusters modified porous g-C3N4 nanosheets to significantly enhance hydrogen production by photocatalytic water reforming of methanol [J]. Chinese Journal of Chemical Engineering, 2024, 66(2): 40-50. |
[5] | Xinyao Sun, Liu Zhao, Xu Hou, Hao Zhou, Huimin Qiao, Chenggong Song, Jing Huang, Enxian Yuan. Screening non-noble metal oxides to boost the low-temperature combustion of polyethylene waste in air [J]. Chinese Journal of Chemical Engineering, 2023, 58(6): 155-162. |
[6] | Shuhui Fan, Qi Wang, Yanan Hu, Qiang Zhao, Jinping Li, Guang Liu. Efficient electrocatalytic conversion of N2 to NH3 using oxygen-rich vacancy lithium niobate cubes [J]. Chinese Journal of Chemical Engineering, 2023, 62(10): 132-138. |
[7] | Yishuang Wang, Na Li, Mingqiang Chen, Defang Liang, Chang Li, Quan Liu, Zhonglian Yang, Jun Wang. Glycerol steam reforming over hydrothermal synthetic Ni-Ca/attapulgite for green hydrogen generation [J]. Chinese Journal of Chemical Engineering, 2022, 48(8): 176-190. |
[8] | Zhouxin Chang, Feng Yu, Zhisong Liu, Zijun Wang, Jiangbing Li, Bin Dai, Jinli Zhang. Ni-Al mixed metal oxide with rich oxygen vacancies: CO methanation performance and density functional theory study [J]. Chinese Journal of Chemical Engineering, 2022, 46(6): 73-83. |
[9] | Ying Zhou, Ruiying Li, Zexuan Lv, Jian Liu, Hongjun Zhou, Chunming Xu. Green hydrogen: A promising way to the carbon-free society [J]. Chinese Journal of Chemical Engineering, 2022, 43(3): 2-13. |
[10] | Xuanyi Jia, Xiaomin Hu, Qiao Wang, Baiquan Chen, Xingyue Xie, Lihong Huang. Auto-thermal reforming of acetic acid for hydrogen production by ZnxNiyCrOm±δ catalysts: Effect of Cr promoted Ni-Zn intermetallic compound [J]. Chinese Journal of Chemical Engineering, 2022, 43(3): 216-221. |
[11] | Haocui Zhang, Zhourong Xiao, Mei Yang, Jijun Zou, Guozhu Liu, Xiangwen Zhang. Highly dispersible cerium-oxide modified Ni/SBA-15 for steam reforming of bio-mass based JP10 [J]. Chinese Journal of Chemical Engineering, 2022, 43(3): 255-265. |
[12] | Feng Guo, Haoran Sun, Yuxing Shi, Fengyu Zhou, Weilong Shi. CdS nanoparticles decorated hexagonal Fe2O3 nanosheets with a Z-scheme photogenerated electron transfer path for improved visible-light photocatalytic hydrogen production [J]. Chinese Journal of Chemical Engineering, 2022, 43(3): 266-274. |
[13] | Yixuan Gong, Jiasai Yao, Ping Wang, Zhenxing Li, Hongjun Zhou, Chunming Xu. Perspective of hydrogen energy and recent progress in electrocatalytic water splitting [J]. Chinese Journal of Chemical Engineering, 2022, 43(3): 282-296. |
[14] | Jiankang Wang, Yajing Wang, Zhongping Yao, Zhaohua Jiang. Metal-organic framework-derived Ni doped Co3S4 hierarchical nanosheets as a monolithic electrocatalyst for highly efficient hydrogen evolution reaction in alkaline solution [J]. Chinese Journal of Chemical Engineering, 2022, 42(2): 380-388. |
[15] | Patsakol Prayoonpunratn, Trin Jedsukontorn, Mali Hunsom. Photocatalytic activity of metal nanoparticle-decorated titanium dioxide for simultaneous H2 production and biodiesel wastewater remediation [J]. Chinese Journal of Chemical Engineering, 2021, 36(8): 86-100. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 14
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 110
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||