[1] L.Y. Wang, F. Wan, Y.F. Xu, S.L. Xie, T.C. Zhao, F. Zhang, H. Yang, J.J. Zhu, J.M. Gao, X. Shi, C. Wang, L.W. Lu, Y.F. Yang, X.Y. Yu, S.Y. Chen, X.M. Sun, J.D. Ding, P.N. Chen, C. Ding, F. Xu, H.B. Yu, H.S. Peng, Hierarchical helical carbon nanotube fibre as a bone-integrating anterior cruciate ligament replacement, Nat. Nanotechnol. 18 (2023) 1085-1093. [2] X.R. Xie, J.Y. Cai, D. Li, Y.J. Chen, C.H. Wang, G.G. Hou, T. Steinberg, B. Rolauffs, M. El-Newehy, H. El-Hamshary, J. Jiang, X.M. Mo, J.Z. Zhao, J.L. Wu, Multiphasic bone-ligament-bone integrated scaffold enhances ligamentization and graft-bone integration after anterior cruciate ligament reconstruction, Bioact. Mater. 31 (2023) 178-191. [3] T. Tan, A.A. Gatti, B.F. Fan, K.G. Shea, S.L. Sherman, S.D. Uhlrich, J.L. Hicks, S.L. Delp, P.B. Shull, A.S. Chaudhari, A scoping review of portable sensing for out-of-lab anterior cruciate ligament injury prevention and rehabilitation, NPJ Digit. Med. 6 (1) (2023) 46. [4] T.Y. Lei, T. Zhang, W. Ju, X. Chen, B.C. Heng, W.L. Shen, Z. Yin, Biomimetic strategies for tendon/ligament-to-bone interface regeneration, Bioact. Mater. 6 (8) (2021) 2491-2510. [5] V.D. Mahalingam, N. Behbahani-Nejad, E.A. Ronan, T.J. Olsen, M.J. Smietana, E.M. Wojtys, D.M. Wellik, E.M. Arruda, L.M. Larkin, Fresh versus frozen engineered bone-ligament-bone grafts for sheep anterior cruciate ligament repair, Tissue Eng. Part C Methods 21 (6) (2015) 548-556. [6] M. Younesi, A. Islam, V. Kishore, J.M. Anderson, O. Akkus, Tenogenic induction of human MSCs by anisotropically aligned collagen biotextiles, Adv. Funct. Mater. 24 (36) (2014) 5762-5770. [7] K.A. Murray, M.I. Gibson, Chemical approaches to cryopreservation, Nat. Rev. Chem. 6 (8) (2022) 579-593. [8] L. Zhan, J.S. Rao, N. Sethia, M.Q. Slama, Z. Han, D. Tobolt, M. Etheridge, Q.P. Peterson, C.S. Dutcher, J.C. Bischof, E.B. Finger, Pancreatic islet cryopreservation by vitrification achieves high viability, function, recovery and clinical scalability for transplantation, Nat. Med. 28 (4) (2022) 798-808. [9] H.S. Qi, Y.H. Gao, L. Zhang, Z.X. Cui, X.J. Sui, J.F. Ma, J. Yang, Z.Q. Shu, L. Zhang, Rational design of and mechanism insight into an efficient antifreeze peptide for cryopreservation, Engineering, 34 (3) (2024) 164-173. [10] R.M.F. Tomas, T.L. Bailey, M. Hasan, M.I. Gibson, Extracellular antifreeze protein significantly enhances the cryopreservation of cell monolayers, Biomacromolecules 20 (10) (2019) 3864-3872. [11] V.P. Varma, L. Devi, N.K. Venna, C.L.N. Murthy, M.M. Idris, S. Goel, Ocular fluid As a replacement for serum in cell cryopreservation media, PLoS One 10 (7) (2015) e0131291. [12] L. Zhan, M.G. Li, T. Hays, J. Bischof, Cryopreservation method for Drosophila melanogaster embryos, Nat. Commun. 12 (2021) 2412. [13] Z. Han, L. Gangwar, E. Magnuson, M.L. Etheridge, C.O. Pringle, J.C. Bischof, J. Choi, Supplemented phase diagrams for vitrification CPA cocktails: DP6, VS55 and M22, Cryobiology 106 (2022) 113-121. [14] H.S. Huang, X.M. He, M.L. Yarmush, Advanced technologies for the preservation of mammalian biospecimens, Nat. Biomed. Eng. 5 (8) (2021) 793-804. [15] P. Chen, S. Wang, Z. Chen, P. Ren, R.G. Hepfer, E.D. Greene, L.H. Campbell, K.L. Helke, X. Nie, J.H. Jensen, C. Hill, Y. Wu, K.G.M. Brockbank, H. Yao, Nanowarming and ice-free cryopreservation of large sized, intact porcine articular cartilage, Commun. Biol. 6 (1) (2023) 220. [16] X.L. Liu, G. Zhao, Z.R. Chen, F. Panhwar, X.M. He, Dual suppression effect of magnetic induction heating and microencapsulation on ice crystallization enables low-cryoprotectant vitrification of stem cell-alginate hydrogel constructs, ACS Appl. Mater. Interfaces 10 (19) (2018) 16822-16835. [17] K.Z. Wu, N. Shardt, L. Laouar, J.A.W. Elliott, N.M. Jomha, Vitrification of particulated articular cartilage via calculated protocols, NPJ Regen. Med. 6 (2021) 15. [18] X.J. Sui, C.Y. Wen, J. Yang, H.S. Guo, W.Q. Zhao, Q.S. Li, J.M. Zhang, Y.N. Zhu, L. Zhang, Betaine combined with membrane stabilizers enables solvent-free whole blood cryopreservation and one-step cryoprotectant removal, ACS Biomater. Sci. Eng. 5 (2) (2019) 1083-1091. [19] J. Yang, X.J. Sui, Q.S. Li, W.Q. Zhao, J.M. Zhang, Y.N. Zhu, P.G. Chen, L. Zhang, In situ encapsulation of postcryopreserved cells using alginate polymer and zwitterionic betaine, ACS Biomater. Sci. Eng. 5 (5) (2019) 2621-2630. [20] M. Liu, X.Y. Zhang, H.S. Guo, Y.N. Zhu, C.Y. Wen, X.J. Sui, J. Yang, L. Zhang, DMSO-free cryopreservation of chondrocytes based on zwitterionic molecule and polymers, Biomacromolecules (2019) acs.biomac.9b01024. [21] G.F. Zhao, F. He, C.L. Wu, P. Li, N.Z. Li, J.P. Deng, G.Q. Zhu, W.K. Ren, Y.Y. Peng, Betaine in inflammation: Mechanistic aspects and applications, Front. Immunol. 9 (2018) 1070. [22] A. Baudot, V. Odagescu, Thermal properties of ethylene glycol aqueous solutions, Cryobiology 48 (3) (2004) 283-294. [23] B. Wowk, G.M. Fahy, S. Ahmedyar, M.J. Taylor, Y. Rabin, Vitrification tendency and stability of DP6-based vitrification solutions for complex tissue cryopreservation, Cryobiology 82 (2018) 70-77. [24] N.M. Jomha, G.K. Law, A. Abazari, K. Rekieh, J.A.W. Elliott, L.E. McGann, Permeation of several cryoprotectant agents into porcine articular cartilage, Cryobiology 58 (1) (2009) 110-114. [25] R. Dong, S. Clark, L. Laouar, L. Heinrichs, K.Z. Wu, N.M. Jomha, J.A.W. Elliott, Evaluation of the permeation kinetics of formamide in porcine articular cartilage, Cryobiology 107 (2022) 57-63. [26] K.W. Christensen, J. Turner, K. Coughenour, Y. Maghdouri-White, A.A. Bulysheva, O. Sergeant, M. Rariden, A. Randazzo, A.J. Sheean, G.J. Christ, M.P. Francis, Assembled cell-decorated collagen (AC-DC) fiber bioprinted implants with musculoskeletal tissue properties promote functional recovery in volumetric muscle loss, Adv. Healthc. Mater. 11 (3) (2022) e2101357. [27] C. Williams, E. Budina, W.L. Stoppel, K.E. Sullivan, S. Emani, S.M. Emani, L.D. Black 3rd, Cardiac extracellular matrix-fibrin hybrid scaffolds with tunable properties for cardiovascular tissue engineering, Acta Biomater. 14 (2015) 84-95. [28] U. Butt, Z.A. Khan, N. Zahir, Z. Khan, F. Vuletic, I. Shah, J.A. Shah, A.M. Siddiqui, D. Hudetz, Histological and cellular evaluation of anterior cruciate ligament, Knee 27 (5) (2020) 1510-1518. [29] X.J. Sui, P.G. Chen, C.Y. Wen, J. Yang, Q.S. Li, L. Zhang, Exploring novel cell cryoprotectants based on neutral amino acids, Chin. J. Chem. Eng. 28 (10) (2020) 2640-2649. [30] J. Yang, C. Pan, J.M. Zhang, X.J. Sui, Y.N. Zhu, C.Y. Wen, L. Zhang, Exploring the potential of biocompatible osmoprotectants as highly efficient cryoprotectants, ACS Appl. Mater. Interfaces 9 (49) (2017) 42516-42524. [31] J. Choi, J.C. Bischof, Review of biomaterial thermal property measurements in the cryogenic regime and their use for prediction of equilibrium and non-equilibrium freezing applications in cryobiology, Cryobiology 60 (1) (2010) 52-70. [32] J.M. Chen, X.J. Liu, Y.Y. Hu, X.X. Chen, S.W. Tan, Cryopreservation of tissues and organs: Present, bottlenecks, and future, Front. Vet. Sci. 10 (2023) 1201794. [33] N. Guan, S.A. Blomsma, P.M. van Midwoud, G.M. Fahy, G.M.M. Groothuis, I.A.M. de Graaf, Effects of cryoprotectant addition and washout methods on the viability of precision-cut liver slices, Cryobiology 65 (3) (2012) 179-187. [34] A.J.F. Reardon, J.A.W. Elliott, L.E. McGann, Investigating membrane and mitochondrial cryobiological responses of HUVEC using interrupted cooling protocols, Cryobiology 71 (2) (2015) 306-317. [35] H.D. Wang, T.R. Wang, Y. Sui, J. Wang, W. Chen, Y.Z. Zhang, An autograft for anterior cruciate ligament reconstruction results in better biomechanical performance and tendon-bone incorporation than does a hybrid graft in a rat model, Am. J. Sports Med. 48 (14) (2020) 3515-3524. [36] A. Ristaniemi, L. Stenroth, S. Mikkonen, R.K. Korhonen, Comparison of elastic, viscoelastic and failure tensile material properties of knee ligaments and patellar tendon, J. Biomech. 79 (2018) 31-38. [37] P.P. Provenzano, A.L. Alejandro-Osorio, K.W. Grorud, D.A. Martinez, A.C. Vailas, R.E. Grindeland, R.J. Vanderby, Systemic administration of IGF-I enhances healing in collagenous extracellular matrices: Evaluation of loaded and unloaded ligaments, BMC Physiol. 7 (2007) 2. [38] K. Otabe, H. Nakahara, A. Hasegawa, T. Matsukawa, F. Ayabe, N. Onizuka, M. Inui, S. Takada, Y. Ito, I. Sekiya, T. Muneta, M. Lotz, H. Asahara, Transcription factor Mohawk controls tenogenic differentiation of bone marrow mesenchymal stem cells in vitro and in vivo, J. Orthop. Res. 33 (1) (2015) 1-8. [39] A. Ristaniemi, J. Torniainen, L. Stenroth, M.A.J. Finnila, T. Paakkonen, J. Toyras, R.K. Korhonen, Comparison of water, hydroxyproline, uronic acid and elastin contents of bovine knee ligaments and patellar tendon and their relationships with biomechanical properties, J. Mech. Behav. Biomed. Mater. 104 (2020) 103639. [40] D.N. Chen, L.R. Smith, G. Khandekar, P. Patel, C.K. Yu, K.H. Zhang, C.S. Chen, L. Han, R.G. Wells, Distinct effects of different matrix proteoglycans on collagen fibrillogenesis and cell-mediated collagen reorganization, Sci. Rep. 10 (1) (2020) 19065. [41] A. Ristaniemi, D. Regmi, D. Mondal, J. Torniainen, P. Tanska, L. Stenroth, M.A.J. Finnila, J. Toyras, R.K. Korhonen, Structure, composition and fibril-reinforced poroviscoelastic properties of bovine knee ligaments and patellar tendon, J. R. Soc. Interface. 18 (174) (2021) 20200737. |