[1] Kaya M. Recovery of metals and nonmetals from electronic waste by physical and chemical recycling processes[J]. Waste Management. 2016, 57: 64-90. [2] Sharma M, Kaushal D, Joshi S, et al. Electronic waste disposal behavioral intention of millennials: A moderating role of electronic word of mouth (eWOM) and perceived usage of online collection portal[J]. Journal of Cleaner Production. 2024, 447: 141121. [3] Jingjing C, Bin L, Yu D,et al. Status analysis on recycling technology of spent printed circuit board[J]. Modern Chemical Industry. 2019, 39(05): 42-46. [4] Aboud A A, Mukherjee A, Revaprasadu N, et al. The effect of Cu-doping on CdS thin films deposited by the spray pyrolysis technique[J]. Journal of Materials Research and Technology. 2019,8(2): 2021-2030. https://doi.org/10.1016/j.jmrt.2018.10.017. [5] Gao R, Zhan L, Guo J, et al. Research of the thermal decomposition mechanism and pyrolysis pathways from macromonomer to small molecule of waste printed circuit board[J]. Journal of Hazardous Materials. 2020, 383: 121234. [6] Jujun R, Jie Z, Jian H, et al. A Novel Designed Bioreactor for Recovering Precious Metals from Waste Printed Circuit Boards[J]. Scientific Reports. 2015, 5(1). [7] Qiu R, Lin M, Qin B, et al. Environmental-friendly recovery of non-metallic resources from waste printed circuit boards: A review[J]. Journal of Cleaner Production. 2021, 279: 123738. [8] Arabiourrutia M, Lopez G, Artetxe M, et al. Waste tyre valorization by catalytic pyrolysis - A review[J]. Renewable and Sustainable Energy Reviews. 2020, 129: 109932. [9] Lee D, Lu J, Chang J. Pyrolysis synergy of municipal solid waste (MSW): A review[J]. Bioresource Technology. 2020, 318: 123912. [10] Li, B., Tao, R., Wu, Y., Zhang, W., Liu, X., Wang, W., Study on the pyrolysis characteristics and reaction mechanisms of WLED packaging materials[J]. Journal of Analytical and Applied Pyrolysis. 2023, 170: 105935. [11] Kim Y, Han T U, Kim S, et al. Catalytic co-pyrolysis of epoxy-printed circuit board and plastics over HZSM-5 and HY[J]. Journal of Cleaner Production. 2017, 168: 366-374. [12] Liu B, Gao R, Xu Z. Fabrication of super-hydrophobic surfaces utilizing pyrolysis of waste printed circuit boards[J]. Journal of Cleaner Production. 2020, 244: 118727. [13] Kim Y, Han T U, Watanabe C, et al. Analytical pyrolysis of waste paper laminated phenolic-printed circuit board (PLP-PCB)[J]. Journal of Analytical and Applied Pyrolysis. 2015, 115: 87-95. [14] Li C, Xia H, Liu C, et al. Analysis of the effect of heating rate on pyrolysis kinetics and product composition of copper-containing waste circuit boards[J]. Environmental Science and Pollution Research. 2023, 30(12): 33075-33089. [15] Ortuno N, Molto J, Egea S, et al. Thermogravimetric study of the decomposition of printed circuit boards from mobile phones[J]. Journal of Analytical and Applied Pyrolysis. 2013, 103: 189-200. [16] Du N, Ma H, Zhang H, et al. Simulation study on the heat transfer characteristics of a single printed circuit board particle in the pyrolysis process[J]. Fuel Processing Technology. 2019, 192: 45-56. [17] Du X, Wang L, Zhao W, et al. Preparation of hierarchical porous carbon from waste printed circuit boards for high performance electric double-layer capacitors[J]. Journal of Power Sources. 2016, 323: 166-173. [18] Chiang H, Lin K, Lai M, et al. Pyrolysis characteristics of integrated circuit boards at various particle sizes and temperatures[J]. Journal of Hazardous Materials. 2007, 149(1): 151-159. [19] Zhao C, Zhang X, Shi L. Catalytic pyrolysis characteristics of scrap printed circuit boards by TG-FTIR[J]. Waste Management. 2017, 61: 354-361. [20] Jie G, Ying-Shun L, Mai-Xi L. Product characterization of waste printed circuit board by pyrolysis[J]. Journal of Analytical and Applied Pyrolysis. 2008, 83(2): 185-189. [21] Deng Q, Pan D, Liu G, et al. Leaching Br from high bromine containing circuit board smelting flue dust by sodium hydroxide solution: thermodynamics and kinetics study[J]. Journal of Materials Research and Technology. 2020, 9(4): 8675-8684. [22] Li C, Xia H, Liu C, et al. Steam gasification assisted pyrolysis directional de bromination of waste printed circuit boards and comprehensive utilization of products[J]. Journal of Cleaner Production. 2022, 366: 132979. [23] Wang R, Zhu Z, Tan S, et al. Mechanochemical degradation of brominated flame retardants in waste printed circuit boards by Ball Milling[J]. Journal of Hazardous Materials. 2020, 385: 121509. [24] Zhang T, Mao X, Qu J, et al. Microwave-assisted catalytic pyrolysis of waste printed circuit boards, and migration and distribution of bromine[J]. Journal of Hazardous Materials. 2021, 402: 123749. [25] Zhu J, Chen X, Zhao N, et al. Bromine removal from resin particles of crushed waste printed circuit boards by vacuum low-temperature heating[J]. Journal of Cleaner Production. 2020, 262: 121390. [26] Ma C, Kamo T. Two-stage catalytic pyrolysis and debromination of printed circuit boards: Effect of zero-valent Fe and Ni metals[J]. Journal of Analytical and Applied Pyrolysis. 2018, 134: 614-620. [27] Terakado O, Ohhashi R, Hirasawa M. Bromine fixation by metal oxide in pyrolysis of printed circuit board containing brominated flame retardant[J]. Journal of Analytical and Applied Pyrolysis. 2013, 103: 216-221. [28] Gao R, Liu B, Zhan L, et al. Catalytic effect and mechanism of coexisting copper on conversion of organics during pyrolysis of waste printed circuit boards[J]. Journal of Hazardous Materials. 2021, 403: 123465. [29] Liu W, Xu J, Han J, et al. Kinetic and Mechanism Studies on Pyrolysis of Printed Circuit Boards in the Absence and Presence of Copper[J]. ACS Sustainable Chemistry & Engineering. 2018, 7(2): 1879-1889. [30] Qin L, Han J, Zhao B, et al. Thermal degradation of medical plastic waste by in-situ FTIR, TG-MS and TG-GC/MS coupled analyses[J]. Journal of Analytical and Applied Pyrolysis. 2018, 136: 132-145. [31] Mustata F, Tudorachi N. Thermal behavior of epoxy resin cured with aromatic dicarboxylic acids[J]. Journal of Thermal Analysis and Calorimetry. 2016, 125(1). [32] de Marco I, Caballero B M, Chomon M J, et al. Pyrolysis of electrical and electronic wastes[J]. Journal of Analytical and Applied Pyrolysis. 2008, 82(2): 179-183. [33] Parthasarathy P, Fernandez A, Al-Ansari T, et al. Thermal degradation characteristics and gasification kinetics of camel manure using thermogravimetric analysis[J]. Journal of Environmental Management. 2021, 287: 112345. [34] Masawat N, Atong D, Sricharoenchaikul V. Thermo-kinetics and product analysis of the catalytic pyrolysis of Pongamia residual cake[J]. Journal of Environmental Management. 2019, 242: 238-245. [35] Takeo O. Non-isothermal kinetics and generalized time[J]. Elsevier. 1986, 100(1). [36] Cao R, Zhou R, Liu Y, et al. Research on the pyrolysis characteristics and mechanisms of waste printed circuit boards at fast and slow heating rates[J]. Waste Management. 2022, 149: 134-145. [37] Kaya H, Hacaloglu J. Thermal degradation of polystyrene composites. Part I. The effect of brominated polyepoxy and antimony oxide[J]. Journal of Analytical and Applied Pyrolysis. 2014, 105: 301-308. [38] Ming L, Shun G, Zhiying W, et al. Ultrarapid and Deep Debromination of Tetrabromodiphenyl Ether over Noble-Metal-Free Cu/TiO2 Nanocomposites under Mild Conditions.[J]. Environmental science & technology. 2018, 52(20). [39] Frisch, M.J., Trucks, G.W., Schlegel, H.B., Scuseria, G.E., Robb, M.A., Cheeseman, J.R., Scalmani, G., Barone, V., Mennucci, B., Petersson, G.A., Nakatsuji, H., Caricato, M., Li, X., Hratchian, H.P., Izmaylov, A.F., Bloino, J., Zheng, G., Sonnenberg, J.L., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Vreven, T., Montgomery, J.A., Jr., Peralta, J.E., Ogliaro, F., Bearpark, M., Heyd, J.J., Brothers, E., Kudin, K.N., Staroverov, V.N., Kobayashi, R., Normand, J., Raghavachari, K., Rendell, A., Burant, J. C., Iyengar, S. S., Tomasi, J., Cossi, M., Rega, N., Millam, J.M., Klene, M., Knox, J.E., J. B. Cross, Bakken, V., Adamo, C., J. Jaramillo, R. Gomperts, Stratmann, R.E., O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, Ochterski, J.W., Martin, R.L., Morokuma, K., Zakrzewski, V.G., Voth, G.A., Salvador, P., Dannenberg, J.J., Dapprich, S., Daniels, A.D., Farkas, O., Foresman, J.B., Ortiz, J.V., Cioslowski, J. and Fox, D.J., 2009. Gaussian 09. Gaussian, Inc, Wallingford, CT. |