Chinese Journal of Chemical Engineering ›› 2024, Vol. 74 ›› Issue (10): 100-116.DOI: 10.1016/j.cjche.2024.06.011
• Review • Previous Articles Next Articles
Mirza Nusrat Sweety1,3, Md Abdus Salam1,2
Received:
2024-03-26
Revised:
2024-06-10
Accepted:
2024-06-12
Online:
2024-07-15
Published:
2024-10-28
Contact:
Md Abdus Salam,E-mail:salam.ctg@bcsir.gov.bd,salam.bcsir1@gmail.com
Mirza Nusrat Sweety1,3, Md Abdus Salam1,2
通讯作者:
Md Abdus Salam,E-mail:salam.ctg@bcsir.gov.bd,salam.bcsir1@gmail.com
Mirza Nusrat Sweety, Md Abdus Salam. Proton conductivity performance and its correlation with physio-chemical properties of proton exchange membrane (PEM)[J]. Chinese Journal of Chemical Engineering, 2024, 74(10): 100-116.
Mirza Nusrat Sweety, Md Abdus Salam. Proton conductivity performance and its correlation with physio-chemical properties of proton exchange membrane (PEM)[J]. 中国化学工程学报, 2024, 74(10): 100-116.
Add to citation manager EndNote|Ris|BibTeX
URL: https://cjche.cip.com.cn/EN/10.1016/j.cjche.2024.06.011
[1] Z. Wang, H.L. Tang, H.J. Zhang, M. Lei, R. Chen, P. Xiao, M. Pan, Synthesis of Nafion/CeO2 hybrid for chemically durable proton exchange membrane of fuel cell, J. Membr. Sci. 421 (2012) 201-210. [2] Z. Abdin, A. Zafaranloo, A. Rafiee, W. Merida, W. Lipinski, K.R. Khalilpour. Hydrogen as an energy vector. Renew. Sustain. Energy Rev. 120(109620) (2020) 1-32. [3] H. Nazir, N. Muthuswamy, C. Louis, S. Jose, J. Prakash, M.E.M. Buan, C. Flox, S. Chavan, X. Shi, P. Kauranen, T. Kallio, G. Maia, K. Tammeveski, N. Lymperopoulos, E. Carcadea, E. Veziroglu, A. Iranzo, A.M. Kannan, Is the H2 economy realizable in the foreseeable future? Part III: H2 usage technologies, applications, and challenges and opportunities, Int. J. Hydrogen Energy 45 (53) (2020) 28217-28239. [4] A. Alaswad, A. Omran, J.R. Sodre, T. Wilberforce, G. Pignatelli, M. Dassisti, A. Baroutaji, A.G. Olabi, Technical and commercial challenges of proton-exchange membrane (PEM) fuel cells, Energies 14 (1) (2020) 144. [5] C. Cui, S.B. Li, J.Y. Gong, K.Y. Wei, X.J. Hou, C.R. Jiang, Y.L. Yao, J.J. Ma, Review of molten carbonate-based direct carbon fuel cells, Mater. Renew. Sustain. Energy 10 (2) (2021) 12. [6] H.A. Elwan, M. Mamlouk, K. Scott, A review of proton exchange membranes based on protic ionic liquid/polymer blends for polymer electrolyte membrane fuel cells, J. Power Sources 484 (2021) 229197. [7] M. Robert, A. El Kaddouri, J.C. Perrin, K. Mozet, M. Daoudi, J. Dillet, J.Y. Morel, S. Andre, O. Lottin, Effects of conjoint mechanical and chemical stress on perfluorosulfonic-acid membranes for fuel cells, J. Power Sources 476 (2020) 228662. [8] M.S. Habib, P. Arefin, M.A. Salam, K. Ahmed, M.S. Uddin, T. Hossain, N. Papri, T. Islam, Proton exchange membrane fuel cell (PEMFC) durability factors, challenges, and future perspectives: A detailed review, Mat. Sci. Res. India 18 (2) (2021) 217-234. [9] M.M. Tellez-Cruz, J. Escorihuela, O. Solorza-Feria, V. Compan, Proton exchange membrane fuel cells (PEMFCs): Advances and challenges, Polymers 13 (18) (2021) 3064. [10] M.Z. Pan, C.J. Pan, C. Li, J. Zhao, A review of membranes in proton exchange membrane fuel cells: Transport phenomena, performance and durability, Renew. Sustain. Energy Rev. 141 (2021) 110771. [11] Z. Zakaria, N. Shaari, S.K. Kamarudin, R. Bahru, M.T. Musa, A review of progressive advanced polymer nanohybrid membrane in fuel cell application, Int. J. Energy Res. 44 (11) (2020) 8255-8295. [12] R. Kannan, B.A. Kakade, V.K. Pillai, Polymer electrolyte fuel cells using nafion-based composite membranes with functionalized carbon nanotubes, Angew. Chem. Int. Ed Engl. 47 (14) (2008) 2653-2656. [13] Y. Prykhodko, K. Fatyeyeva, L. Hespel, S. Marais, Progress in hybrid composite Nafion®-based membranes for proton exchange fuel cell application, Chem. Eng. J. 409 (2021) 127329. [14] Y.N. Yusoff, N. Shaari, An overview on the development of nanofiber-based as polymer electrolyte membrane and electrocatalyst in fuel cell application, Int. J. Energy Res. 45 (13) (2021) 18441-18472. [15] L.G. Boutsika, A. Enotiadis, I. Nicotera, C. Simari, G. Charalambopoulou, E.P. Giannelis, T. Steriotis, Nafion® nanocomposite membranes with enhanced properties at high temperature and low humidity environments, Int. J. Hydrog. Energy 41 (47) (2016) 22406-22414. [16] T.L. Yu, H.L. Lin, K.S. Shen, L.N. Huang, Y.C. Chang, G.B. Jung, J.C. Huang, Nafion/PTFE composite membranes for fuel cell applications, J. Polym. Res. 11 (3) (2004) 217-224. [17] S. Neelakandan, D. Liu, L. Wang, M.S. Hu, L. Wang, Highly branched poly (arylene ether)/surface-functionalized fullerene-based composite membrane electrolyte for DMFC applications, Int. J. Energy Res. 43 (11) (2019) 6056. [18] F.C. Teixeira, A.I. de Sa, A.P.S. Teixeira, C.M. Rangel, Nafion phosphonic acid composite membranes for proton exchange membranes fuel cells, Appl. Surf. Sci. 487 (2019) 889-897. [19] S. Jang, M. Her, S. Kim, J.H. Jang, J.E. Chae, J. Choi, M. Choi, S.M. Kim, H.J. Kim, Y.H. Cho, Y.E. Sung, S.J. Yoo, Membrane/electrode interface design for effective water management in alkaline membrane fuel cells, ACS Appl. Mater. Interfaces 11 (38) (2019) 34805-34811. [20] Y. Hu, J. Li, S. Wang, Examination of the performance of degraded Nafion membrane with graphene oxide, Int. J. Hydrog. Energy 48 (81) (2023) 31734-31744. [21] W.W. Ng, H.S. Thiam, Y.L. Pang, Y.S. Lim, J. Wong, L.H. Saw, Self-sustainable, self-healable sulfonated graphene oxide incorporated nafion/poly(vinyl alcohol) proton exchange membrane for direct methanol fuel cell applications, J. Environ. Chem. Eng. 11 (6) (2023) 111151. [22] L.Y. Zhu, Y.C. Li, J. Liu, J. He, L.Y. Wang, J.D. Lei, Recent developments in high-performance Nafion membranes for hydrogen fuel cells applications, Petrol. Sci. 19 (3) (2022) 1371-1381. [23] P.C. Okonkwo, I. Ben Belgacem, W. Emori, P.C. Uzoma, Nafion degradation mechanisms in proton exchange membrane fuel cell (PEMFC) system: A review, Int. J. Hydrog. Energy 46 (55) (2021) 27956-27973. [24] K. Feng, B.B. Tang, P.Y. Wu, Ammonia-assisted dehydrofluorination between PVDF and Nafion for highly selective and low-cost proton exchange membranes: A possible way to further strengthen the commercialization of Nafion, J. Mater. Chem. A 3 (24) (2015) 12609-12615. [25] C.Y. Ru, Y.Y. Gu, Y.T. Duan, C.J. Zhao, H. Na, Enhancement in proton conductivity and methanol resistance of Nafion membrane induced by blending sulfonated poly(arylene ether ketones) for direct methanol fuel cells, J. Membr. Sci. 573 (2019) 439-447. [26] N. Shaari, S.K. Kamarudin, Recent advances in additive-enhanced polymer electrolyte membrane properties in fuel cell applications: An overview, Int. J. Energy Res. 43 (7) (2019) 2756-2794. [27] A.O. Krasnova, N.V. Glebova, A.G. Kastsova, M.K. Rabchinskii, A.A. Nechitailov, Thermal stabilization of nafion with nanocarbon materials, Polymers 15 (9) (2023) 2070. [28] J. Zhao, D. Song, J. Jia, N. Wang, K. Liu, T.T. Zuo, Q.T. Che, Constructing proton exchange membranes with high and stable proton conductivity at subzero temperature through vacuum assisted flocculation technique, Appl. Surf. Sci. 585 (2022) 152579. [29] S. Jang, Y.S. Kang, J. Choi, J.H. Yeon, C. Seol, L.V. Nam, M. Choi, S.M. Kim, S.J. Yoo, Prism patterned TiO2 layers/Nafion® composite membrane for elevated temperature/low relative humidity fuel cell operation, J. Ind. Eng. Chem. 90 (2020) 327-332. [30] R. Ohno, K. Shudo, T. Tano, K. Kakinuma, Development of polymer composite membranes with hydrophilic TiO2 nanoparticles and perfluorosulfonic acid-based electrolyte for polymer electrolyte fuel cells operating over a wide temperature range, ACS Appl. Energy Mater. 6 (19) (2023) 10098-10104. [31] D. Cozzi, C. de Bonis, A. D’Epifanio, B. Mecheri, A.C. Tavares, S. Licoccia, Organically functionalized titanium oxide/Nafion composite proton exchange membranes for fuel cells applications, J. Power Sources 248 (2014) 1127-1132. [32] R. Sigwadi, T. Mokrani, M.S. Dhlamini, P. Nonjola, P.F. Msomi, Nafion®/sulfated zirconia oxide-nanocomposite membrane: The effects of ammonia sulfate on fuel permeability, J. Polym. Res. 26 (5) (2019) 108. [33] V. Di Noto, N. Boaretto, E. Negro, G.A. Giffin, S. Lavina, S. Polizzi, Inorganic-organic membranes based on Nafion, [(ZrO2)·(HfO2)0.25]and [(SiO2)·(HfO2)0.28]. Part I: Synthesis, thermal stability and performance in a single PEMFC, Int. J. Hydrog. Energy 37 (7) (2012) 6199-6214. [34] S.J. Liu, J.L. Yu, Y.P. Hao, F. Gao, M. Zhou, L.J. Zhao, Impact of SiO2 modification on the performance of nafion composite membrane, Int. J. Polym. Sci. 2024 (2024) 6309923. [35] H. Wang, X.J. Li, X.P. Zhuang, B.W. Cheng, W. Wang, W.M. Kang, L. Shi, H.J. Li, Modification of Nafion membrane with biofunctional SiO2 nanofiber for proton exchange membrane fuel cells, J. Power Sources 340 (2017) 201-209. [36] J. Li, G.X. Xu, X.Y. Luo, J. Xiong, Z. Liu, W.W. Cai, Effect of nano-size of functionalized silica on overall performance of swelling-filling modified Nafion membrane for direct methanol fuel cell application, Appl. Energy 213 (2018) 408-414. [37] K. Oh, O. Kwon, B. Son, D.H. Lee, S. Shanmugam, Nafion-sulfonated silica composite membrane for proton exchange membrane fuel cells under operating low humidity condition, J. Membr. Sci. 583 (2019) 103-109. [38] Z.Y. Rui, R. Ding, K. Hua, X. Duan, X.K. Li, Y.K. Wu, X.B. Wang, C. Ouyang, J. Li, T. Li, J.G. Liu, Design of proton exchange membranes with high durability for fuel cells: From the perspective of machine learning, J. Membr. Sci. 683 (2023) 121831. [39] O. Danyliv, A. Martinelli, Nafion/protic ionic liquid blends: Nanoscale organization and transport properties, J. Phys. Chem. C 123 (23) (2019) 14813-14824. [40] M. Tawalbeh, A. Al-Othman, A. Ka’ki, S. Mohamad, M. Faheem Hassan, Starch-chitosan-ionic liquids-based composite membranes for high temperature PEM fuel cells applications, Int. J. Hydrog. Energy 67 (2024) 852-862. [41] Y. Li, Y. Shi, N. Mehio, M.S. Tan, Z.Y. Wang, X.H. Hu, G.Z. Chen, S. Dai, X.B. Jin, More sustainable electricity generation in hot and dry fuel cells with a novel hybrid membrane of Nafion/nano-silica/hydroxyl ionic liquid, Appl. Energy 175 (2016) 451-458. [42] J.W. Liu, L. Ding, H.Q. Zou, Z.P. Huan, H.T. Liu, J. Lu, S.N. Wang, Y.W. Li, A simple MOF constructed using Pb(ii) with strong polarizing force: A filler of Nafion membrane to increase proton conductivity, Dalton Trans. 52 (45) (2023) 16650-16660. [43] G.D. Zhao, L. Shi, M.L. Zhang, B.W. Cheng, G. Yang, X.P. Zhuang, Self-assembly of metal-organic framework onto nanofibrous mats to enhance proton conductivity for proton exchange membrane, Int. J. Hydrog. Energy 46 (73) (2021) 36415-36423. [44] Y. Li, H. Wu, Y.H. Yin, L. Cao, X.Y. He, B.B. Shi, J.Z. Li, M.Z. Xu, Z.Y. Jiang, Fabrication of Nafion/zwitterion-functionalized covalent organic framework composite membranes with improved proton conductivity, J. Membr. Sci. 568 (2018) 1-9. [45] I. Ressam, A. El Kadib, M. Lahcini, G.A. Luinstra, H. Perrot, O. Sel, Enhanced proton transport properties of Nafion via functionalized halloysite nanotubes, Int. J. Hydrog. Energy 43 (40) (2018) 18578-18591. [46] C. Beauger, G. Laine, A. Burr, A. Taguet, B. Otazaghine, Improvement of Nafion®-sepiolite composite membranes for PEMFC with sulfo-fluorinated sepiolite, J. Membr. Sci. 495 (2015) 392-403. [47] C. Beauger, G. Laine, A. Burr, A. Taguet, B. Otazaghine, A. Rigacci, Nafion®-sepiolite composite membranes for improved proton exchange membrane fuel cell performance, J. Membr. Sci. 430 (2013) 167-179. [48] S.J. Lue, Y.L. Pai, C.M. Shih, M.C. Wu, S.M. Lai, Novel bilayer well-aligned Nafion/graphene oxide composite membranes prepared using spin coating method for direct liquid fuel cells, J. Membr. Sci. 493 (2015) 212-223. [49] G. Rambabu, N. Nagaraju, S.D. Bhat, Functionalized fullerene embedded in Nafion matrix: A modified composite membrane electrolyte for direct methanol fuel cells, Chem. Eng. J. 306 (2016) 43-52. [50] C.S. Yin, B.Y. Xiong, Q.C. Liu, J.J. Li, L.B. Qian, Y.W. Zhou, C.Q. He, Lateral-aligned sulfonated carbon-nanotubes/Nafion composite membranes with high proton conductivity and improved mechanical properties, J. Membr. Sci. 591 (2019) 117356. [51] J.S. Gao, X.K. Dong, Q.B. Tian, Y. He, Carbon nanotubes reinforced proton exchange membranes in fuel cells: An overview, Int. J. Hydrog. Energy 48 (8) (2023) 3216-3231. [52] N.J. Steffy, V. Parthiban, A.K. Sahu, Uncovering Nafion-multiwalled carbon nanotube hybrid membrane for prospective polymer electrolyte membrane fuel cell under low humidity, J. Membr. Sci. 563 (2018) 65-74. [53] X.H. Yan, R.Z. Wu, J.B. Xu, Z.T. Luo, T.S. Zhao, A monolayer graphene-Nafion sandwich membrane for direct methanol fuel cells, J. Power Sources 311 (2016) 188-194. [54] Y.F. Lian, Y.X. Liu, T. Jiang, J. Shu, H.Q. Lian, M.H. Cao, Enhanced electromechanical performance of graphite oxide-nafion nanocomposite actuator, J. Phys. Chem. C 114 (21) (2010) 9659-9663. [55] M. Vinothkannan, A.R. Kim, G. Gnana kumar, J.M. Yoon, D.J. Yoo, Toward improved mechanical strength, oxidative stability and proton conductivity of an aligned quadratic hybrid (SPEEK/FPAPB/Fe3O4-FGO) membrane for application in high temperature and low humidity fuel cells, RSC Adv. 7 (62) (2017) 39034-39048. [56] M. Vinothkannan, A.R. Kim, K.S. Nahm, D.J. Yoo, Ternary hybrid (SPEEK/SPVdF-HFP/GO) based membrane electrolyte for the applications of fuel cells: Profile of improved mechanical strength, thermal stability and proton conductivity, RSC Adv. 6 (110) (2016) 108851-108863. [57] B.P. Tripathi, V.K. Shahi, Organic-inorganic nanocomposite polymer electrolyte membranes for fuel cell applications, Prog. Polym. Sci. 36 (7) (2011) 945-979. [58] M. Mariani, A. Basso Peressut, S. Latorrata, R. Balzarotti, M. Sansotera, G. Dotelli, The role of fluorinated polymers in the water management of proton exchange membrane fuel cells: A review, Energies 14 (24) (2021) 8387. [59] Y.Z. Ke, W. Yuan, F.K. Zhou, W.W. Guo, J.G. Li, Z.Y. Zhuang, X.Q. Su, B.W. Lu, Y.H. Zhao, Y. Tang, Y. Chen, J.L. Song, A critical review on surface-pattern engineering of nafion membrane for fuel cell applications, Renew. Sustain. Energy Rev. 145 (2021) 110860. [60] M.B. Karimi, K. Hooshyari, P. Salarizadeh, H. Beydaghi, V.M. Ortiz-Martinez, A. Ortiz, I. Ortiz Uribe, F. Mohammadi, A comprehensive review on the proton conductivity of proton exchange membranes (PEMs) under anhydrous conditions: Proton conductivity upper bound, Int. J. Hydrog. Energy 46 (69) (2021) 34413-34437. [61] M.B. Karimi, F. Mohammadi, K. Hooshyari, Recent approaches to improve Nafion performance for fuel cell applications: A review, Int. J. Hydrog. Energy 44 (54) (2019) 28919-28938. [62] Z.X. Bai, S.C. Liu, G.J. Cheng, G.Y. Wu, Y. Liu, High proton conductivity of MOFs-polymer composite membranes by phosphoric acid impregnation, Microporous Mesoporous Mater. 292 (2020) 109763. [63] X.B. Li, H.W. Ma, P. Wang, Z.C. Liu, J.W. Peng, W. Hu, Z.H. Jiang, B.J. Liu, M.D. Guiver, Highly conductive and mechanically stable imidazole-rich cross-linked networks for high-temperature proton exchange membrane fuel cells, Chem. Mater. 32 (3) (2020) 1182-1191. [64] L.L. Liu, Y.Y. Pu, Y. Lu, N. Li, Z.X. Hu, S.W. Chen, Superacid sulfated SnO2 doped with CeO2: A novel inorganic filler to simultaneously enhance conductivity and stabilities of proton exchange membrane, J. Membr. Sci. 621 (2021) 118972. [65] S.S. Aravind, S. Ramaprabhu, Pt nanoparticle-dispersed graphene-wrapped MWNT composites as oxygen reduction reaction electrocatalyst in proton exchange membrane fuel cell, ACS Appl. Mater. Interfaces 4 (8) (2012) 3805-3810. [66] P. Prapainainar, N. Pattanapisutkun, C. Prapainainar, P. Kongkachuichay, Incorporating graphene oxide to improve the performance of Nafion-mordenite composite membranes for a direct methanol fuel cell, Int. J. Hydrog. Energy 44 (1) (2019) 362-378. [67] L.P. Zhao, Y.F. Li, H.Q. Zhang, W.J. Wu, J.D. Liu, J.T. Wang, Constructing proton-conductive highways within an ionomer membrane by embedding sulfonated polymer brush modified graphene oxide, J. Power Sources 286 (2015) 445-457. [68] K.J. Peng, J.Y. Lai, Y.L. Liu, Nanohybrids of graphene oxide chemically-bonded with Nafion: Preparation and application for proton exchange membrane fuel cells, J. Membr. Sci. 514 (2016) 86-94. [69] L. Wang, J. Kang, J.D. Nam, J. Suhr, A.K. Prasad, S.G. Advani, Composite membrane based on graphene oxide sheets and nafion for polymer electrolyte membrane fuel cells, ECS Electrochem. Lett. 4 (1) (2015) F1-F4. [70] S.P. Zhang, D. Li, J.X. Kang, G.P. Ma, Y. Liu, Electrospinning preparation of a graphene oxide nanohybrid proton-exchange membrane for fuel cells, J. Appl. Polym. Sci. 135 (27) (2018) e46443. [71] R. Kumar, C.X. Xu, K. Scott, Graphite oxide/Nafion composite membranes for polymer electrolyte fuel cells, RSC Adv. 2 (23) (2012) 8777-8782. [72] P. Li, W.J. Wu, J.D. Liu, B.B. Shi, Y.Q. Du, Y.F. Li, J.T. Wang, Investigating the nanostructures and proton transfer properties of Nafion-GO hybrid membranes, J. Membr. Sci. 555 (2018) 327-336. [73] C. Simari, P. Stallworth, J. Peng, L. Coppola, S. Greenbaum, I. Nicotera, Graphene oxide and sulfonated-derivative: Proton transport properties and electrochemical behavior of Nafion-based nanocomposites, Electrochim. Acta 297 (2019) 240-249. [74] M.H.U. Rehman, L. Coppola, E. Lufrano, I. Nicotera, C. Simari, Enhancing water retention, transport, and conductivity performance in fuel cell applications: Nafion-based nanocomposite membranes with organomodified graphene oxide nanoplatelets, Energies 16 (23) (2023) 7759. [75] C.S. Yin, C.Q. He, Q.C. Liu, B.Y. Xiong, J.J. Li, Y.W. Zhou, Effect of the orientation of sulfonated graphene oxide (SG) on the gas-barrier properties and proton conductivity of a SG/Nafion composite membrane, J. Membr. Sci. 625 (2021) 119146. [76] F. Mahdi, L. Naji, A. Rahmanian, Fabrication of membrane electrode assembly based on nafion/sulfonated graphene oxide nanocomposite by electroless deposition for proton exchange membrane fuel cells, Surf. Interfaces 23 (2021) 100925. [77] M. Di Virgilio, A. Basso Peressut, V. Arosio, A. Arrigoni, S. Latorrata, G. Dotelli, Functional and environmental performances of novel electrolytic membranes for PEM fuel cells: A lab-scale case study, Clean Technol. 5 (1) (2023) 74-93. [78] H.C. Chien, L.D. Tsai, C.P. Huang, C.Y. Kang, J.N. Lin, F.C. Chang, Sulfonated graphene oxide/Nafion composite membranes for high-performance direct methanol fuel cells, Int. J. Hydrog. Energy 38 (31) (2013) 13792-13801. [79] B.A. Aragaw, W.N. Su, J. Rick, B.J. Hwang, Highly efficient synthesis of reduced graphene oxide-Nafion nanocomposites with strong coupling for enhanced proton and electron conduction, RSC Adv. 3 (45) (2013) 23212-23221. [80] W. Jia, B.B. Tang, P.Y. Wu, Novel slightly reduced graphene oxide based proton exchange membrane with constructed long-range ionic nanochannels via self-assembling of nafion, ACS Appl. Mater. Interfaces 9 (27) (2017) 22620-22627. [81] H. Zarrin, D. Higgins, Y. Jun, Z.W. Chen, M. Fowler, Functionalized graphene oxide nanocomposite membrane for low humidity and high temperature proton exchange membrane fuel cells, J. Phys. Chem. C 115 (42) (2011) 20774-20781. [82] B. Zhang, Y. Cao, S.T. Jiang, Z. Li, G.W. He, H. Wu, Enhanced proton conductivity of Nafion nanohybrid membrane incorporated with phosphonic acid functionalized graphene oxide at elevated temperature and low humidity, J. Membr. Sci. 518 (2016) 243-253. [83] B. Barik, Y.J. Yun, A. Kumar, H. Bae, Y. Namgung, J.Y. Park, S.J. Song, Highly enhanced proton conductivity of single-step-functionalized graphene oxide/nafion electrolyte membrane towards improved hydrogen fuel cell performance, Int. J. Hydrog. Energy 48 (29) (2023) 11029-11044. [84] B. Barik, A. Kumar, Y. Namgung, L. Mathur, J.Y. Park, S.J. Song, Mixed-ceria reinforced acid functionalized graphene oxide-Nafion electrolyte membrane with enhanced proton conductivity and chemical durability for PEMFCs, Int. J. Hydrog. Energy 48 (75) (2023) 29313-29326. [85] R. Asmatulu, A. Khan, V.K. Adigoppula, G. Hwang, Enhanced transport properties of graphene-based, thin Nafion® membrane for polymer electrolyte membrane fuel cells, Int. J. Energy Res. 42 (2) (2018) 508-519. [86] A.K. Sahu, K. Ketpang, S. Shanmugam, O. Kwon, S. Lee, H. Kim, Sulfonated graphene-nafion composite membranes for polymer electrolyte fuel cells operating under reduced relative humidity, J. Phys. Chem. C 120 (29) (2016) 15855-15866. [87] Y. Kim, K. Ketpang, S. Jaritphun, J.S. Park, S. Shanmugam, A polyoxometalate coupled graphene oxide-Nafion composite membrane for fuel cells operating at low relative humidity, J. Mater. Chem. A 3 (15) (2015) 8148-8155. [88] D.C. Seo, I. Jeon, E.S. Jeong, J.Y. Jho, Mechanical properties and chemical durability of nafion/sulfonated graphene oxide/cerium oxide composite membranes for fuel-cell applications, Polymers 12 (6) (2020) 1375. [89] M. Vinothkannan, A.R. Kim, G. Gnana Kumar, D.J. Yoo, Sulfonated graphene oxide/Nafion composite membranes for high temperature and low humidity proton exchange membrane fuel cells, RSC Adv. 8 (14) (2018) 7494-7508. [90] J. Maiti, N. Kakati, S.P. Woo, Y.S. Yoon, Nafion® based hybrid composite membrane containing GO and dihydrogen phosphate functionalized ionic liquid for high temperature polymer electrolyte membrane fuel cell, Compos. Sci. Technol. 155 (2018) 189-196. [91] A.K. Mishra, N.H. Kim, D. Jung, J.H. Lee, Enhanced mechanical properties and proton conductivity of Nafion-SPEEK-GO composite membranes for fuel cell applications, J. Membr. Sci. 458 (2014) 128-135. [92] D.C. Lee, H.N. Yang, S.H. Park, W.J. Kim, Nafion/graphene oxide composite membranes for low humidifying polymer electrolyte membrane fuel cell, J. Membr. Sci. 452 (2014) 20-28. [93] Z.Y. Meng, Y.X. Zou, N.N. Li, B. Wang, X.D. Fu, R. Zhang, S.F. Hu, X.J. Bao, X. Li, F. Zhao, Q.T. Liu, Graphene oxide-intercalated microbial montmorillonite to moderate the dependence of nafion-based PEMFCs in high-humidity environments, ACS Appl. Energy Mater. 6 (3) (2023) 1771-1780. [94] K. Feng, B.B. Tang, P.Y. Wu, Sulfonated graphene oxide-silica for highly selective Nafion-based proton exchange membranes, J. Mater. Chem. A 2 (38) (2014) 16083-16092. [95] F.C. Teixeira, A.I. de Sa, A.P.S. Teixeira, V.M. Ortiz-Martinez, A. Ortiz, I. Ortiz, C.M. Rangel, New modified Nafion-bisphosphonic acid composite membranes for enhanced proton conductivity and PEMFC performance, Int. J. Hydrog. Energy 46 (33) (2021) 17562-17571. [96] F.F. Fang, L. Liu, L.F. Min, L. Xu, W. Zhang, Y.X. Wang, Enhanced proton conductivity of Nafion membrane with electrically aligned sulfonated graphene nanoplates, Int. J. Hydrog. Energy 46 (34) (2021) 17784-17792. [97] X.Y. He, G.W. He, A.Q. Zhao, F. Wang, X.L. Mao, Y.H. Yin, L. Cao, B. Zhang, H. Wu, Z.Y. Jiang, Facilitating proton transport in nafion-based membranes at low humidity by incorporating multifunctional graphene oxide nanosheets, ACS Appl. Mater. Interfaces 9 (33) (2017) 27676-27687. [98] L.J. Yang, B.B. Tang, P.Y. Wu, Metal-organic framework-graphene oxide composites: A facile method to highly improve the proton conductivity of PEMs operated under low humidity, J. Mater. Chem. A 3 (31) (2015) 15838-15842. [99] A.R. Kim, C.J. Park, M. Vinothkannan, D.J. Yoo, Sulfonated poly ether sulfone/heteropoly acid composite membranes as electrolytes for the improved power generation of proton exchange membrane fuel cells, Compos. Part B Eng. 155 (2018) 272-281. [100] A.R. Kim, M. Vinothkannan, D.J. Yoo, Artificially designed, low humidifying organic-inorganic (SFBC-50/FSiO2) composite membrane for electrolyte applications of fuel cells, Compos. Part B Eng. 130 (2017) 103-118. [101] F. Ahmed, S.C. Sutradhar, T. Ryu, H. Jang, K. Choi, H.M. Yang, S. Yoon, M.M. Rahman, W. Kim, Comparative study of sulfonated branched and linear poly(phenylene)s polymer electrolyte membranes for fuel cells, Int. J. Hydrog. Energy 43 (10) (2018) 5374-5385. [102] V. Parthiban, S. Akula, S.G. Peera, N. Islam, A.K. Sahu, Proton conducting nafion-sulfonated graphene hybrid membranes for direct methanol fuel cells with reduced methanol crossover, Energy Fuels 30 (1) (2016) 725-734. [103] S. Neelakandan, N.J. K, P. Kanagaraj, R.M. Sabarathinam, A. Muthumeenal, A. Nagendran, Effect of sulfonated graphene oxide on the performance enhancement of acid-base composite membranes for direct methanol fuel cells, RSC Adv. 6 (57) (2016) 51599-51608. [104] S. Gahlot, P.P. Sharma, V. Kulshrestha, P.K. Jha, SGO/SPES-based highly conducting polymer electrolyte membranes for fuel cell application, ACS Appl. Mater. Interfaces 6 (8) (2014) 5595-5601. [105] Y. Devrim, H. Devrim, I. Eroglu, Polybenzimidazole/SiO2 hybrid membranes for high temperature proton exchange membrane fuel cells, Int. J. Hydrog. Energy 41 (23) (2016) 10044-10052. [106] A. Ammar, A.M. Al-Enizi, M.A. AlMaadeed, A. Karim, Influence of graphene oxide on mechanical, morphological, barrier, and electrical properties of polymer membranes, Arab. J. Chem. 9 (2) (2016) 274-286. [107] V. Di Noto, E. Negro, J.Y. Sanchez, C. Iojoiu, Structure-relaxation interplay of a new nanostructured membrane based on tetraethylammonium trifluoromethanesulfonate ionic liquid and neutralized nafion 117 for high-temperature fuel cells, J. Am. Chem. Soc. 132 (7) (2010) 2183-2195. [108] I. Nicotera, C. Simari, L. Coppola, P. Zygouri, D. Gournis, S. Brutti, F.D. Minuto, A.S. Arico, D. Sebastian, V. Baglio, Sulfonated graphene oxide platelets in nafion nanocomposite membrane: Advantages for application in direct methanol fuel cells, J. Phys. Chem. C 118 (42) (2014) 24357-24368. [109] M.J. Parnian, S. Rowshanzamir, A.K. Prasad, S.G. Advani, High durability sulfonated poly (ether ether ketone)-ceria nanocomposite membranes for proton exchange membrane fuel cell applications, J. Membr. Sci. 556 (2018) 12-22. [110] X.X. Zhou, L.X. Wu, G.X. Zhang, R.Y. Li, X. Hu, X.W. Chang, Y.H. Shen, L. Liu, N.W. Li, Rational design of comb-shaped poly(arylene indole piperidinium) to enhance hydroxide ion transport for H2/O2 fuel cell, J. Membr. Sci. 631 (2021) 119335. [111] Y.Y. Zhao, E. Tsuchida, Y.K. Choe, J. Wang, T. Ikeshoji, A. Ohira, Theoretical studies on the degradation of hydrocarbon copolymer ionomers used in fuel cells, J. Membr. Sci. 487 (2015) 229-239. [112] D.B. Han, S.I. Hossain, B. Son, D.H. Lee, S. Shanmugam, Pyrochlore zirconium gadolinium oxide nanorods composite membrane for suppressing the formation of free radical in PEM fuel cell operating under dry condition, ACS Sustainable Chem. Eng. 7 (19) (2019) 16889-16899. [113] A.M. Baker, L. Wang, W.B. Johnson, A.K. Prasad, S.G. Advani, Nafion membranes reinforced with ceria-coated multiwall carbon nanotubes for improved mechanical and chemical durability in polymer electrolyte membrane fuel cells, J. Phys. Chem. C 118 (46) (2014) 26796-26802. [114] M. Seshimo, M. Ozawa, M. Sone, M. Sakurai, H. Kameyama, Hydrogen permeability and membrane durability of novel Pd/.GAMMA.-alumina graded membrane when a sweep gas is used, J. Chem. Eng. Japan 43 (11) (2010) 932-937. |
[1] | Huanxu Teng, Ronghui You, Huanyi Li, Siqi Shao, Qi Zhou, Ying Yang, Ting Wu, Meihua Zhu, Xiangshu Chen, Hidetoshi Kita. Pervaporation performance and characterization of hydrophilic ZSM-5 zeolite membranes for high inorganic acid and inorganic salts [J]. Chinese Journal of Chemical Engineering, 2024, 73(9): 27-33. |
[2] | Yanran Zhu, Yue Zhou, Qian Chen, Rongqiang Fu, Zhaoming Liu, Liang Ge, Tongwen Xu. Waste acid recovery utilizing monovalent cation permselective membranes through selective electrodialysis [J]. Chinese Journal of Chemical Engineering, 2024, 71(7): 45-57. |
[3] | Hebin Li, Zifei Meng, Dehua Wang, Ye Lu, Longlong Jiang, Le Zhang, Hanbin Wang, Xiaoxiong Wang. Application of different fiber structures and arrangements by electrospinning in triboelectric nanogenerators [J]. Chinese Journal of Chemical Engineering, 2024, 69(5): 177-191. |
[4] | Zhihao Yang, Li Chen, Jian Xue, Miaomiao Su, Fangdan Zhang, Liangxin Ding, Suqing Wang, Haihui Wang. Nano-alumina@cellulose-coated separators with the reinforced-concrete-like structure for high-safety lithium-ion batteries [J]. Chinese Journal of Chemical Engineering, 2024, 68(4): 83-93. |
[5] | Yi Zhang, Di Liu, Zhaoli Wang, Junjian Yu, Yanyin Cheng, Wenjing Li, Zhe Wang, Hongzhe Ni, Yuchao Wang. Amino-functionalized UiO-66-doped mixed matrix membranes with high permeation performance and fouling resistance [J]. Chinese Journal of Chemical Engineering, 2024, 67(3): 68-77. |
[6] | Weidong Wu, Yukun Zeng, Chen Zhou, Xin Zhou, Shengyang Yang. Engineering graphene oxide and hydrogel coatings on fabrics for smart Janus textiles with superior thermal regulation [J]. Chinese Journal of Chemical Engineering, 2024, 74(10): 1-12. |
[7] | Dandan Zhou, Shilong Li, Luyi Chai, Jian Lu, Tianxiang Yu, Yuqing Sun, Wenheng Jing. Constructing fast mass-transfer channels with efficient catalytic ozonation activity in 2D manganese dioxide membranes by intercalating Fe/Mn bimetallic MOF [J]. Chinese Journal of Chemical Engineering, 2024, 74(10): 272-286. |
[8] | Elham Ameri, Ali Aghababai Beni, Zahra Pournuroz Nodeh. Design and manufacture of emulsion liquid membrane based on various amine extractants for separation and extraction of succinic acid from fermentation broth [J]. Chinese Journal of Chemical Engineering, 2023, 61(9): 173-179. |
[9] | Xinxin Li, Hongwei Shao, Shichao Zhang, Yong Li, Jingjing Gu, Qiang Huang, Jin Ran. Two dimensional MoS2 finding its way towards constructing high-performance alkaline recovery membranes [J]. Chinese Journal of Chemical Engineering, 2023, 60(8): 155-164. |
[10] | Wenwen Zhang, Zhigang Xue, Liyun Cui, Haoliang Gao, Di Zhao, Rongfei Zhou, Weihong Xing. Synthesis of an IMF zeolite membrane for the separation of xylene isomer [J]. Chinese Journal of Chemical Engineering, 2023, 60(8): 205-211. |
[11] | Hammad Saulat, Jianhua Yang, Tao Yan, Waseem Raza, Wensen Song, Gaohong He. Tungsten incorporated mobil-type eleven zeolite membranes: Facile synthesis and tuneable wettability for highly efficient separation of oil/water mixtures [J]. Chinese Journal of Chemical Engineering, 2023, 60(8): 242-252. |
[12] | Xiongzhuo Zhu, Dali Gao, Chong Yang, Chunjie Yang. A blast furnace fault monitoring algorithm with low false alarm rate: Ensemble of greedy dynamic principal component analysis-Gaussian mixture model [J]. Chinese Journal of Chemical Engineering, 2023, 57(5): 151-161. |
[13] | Fangyuan Ma, Cheng Ji, Jingde Wang, Wei Sun. Early identification of process deviation based on convolutional neural network [J]. Chinese Journal of Chemical Engineering, 2023, 56(4): 104-118. |
[14] | Xingzhong Li, Kunlin Yu, Zibo He, Bo Liu, Rongfei Zhou, Weihong Xing. Improved SSZ-13 thin membranes fabricated by seeded-gel approach for efficient CO2 capture [J]. Chinese Journal of Chemical Engineering, 2023, 56(4): 273-280. |
[15] | Tutuk Djoko Kusworo, Monica Yulfarida, Andri Cahyo Kumoro, Dani Puji Utomo. Purification of bioethanol fermentation broth using hydrophilic PVA crosslinked PVDF-GO/TiO2 membrane [J]. Chinese Journal of Chemical Engineering, 2023, 55(3): 123-136. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||