[1] W. Lubitz, W. Tumas, Hydrogen: an overview, Chem. Rev. 107 (10) (2007) 3900-3903. [2] S.A. Grigoriev, V.N. Fateev, D.G. Bessarabov, P. Millet, Current status, research trends, and challenges in water electrolysis science and technology, Int. J. Hydrog. Energy 45 (49) (2020) 26036-26058. [3] J. Koponen, A. Kosonen, V. Ruuskanen, K. Huoman, M. Niemela, J. Ahola, Control and energy efficiency of PEM water electrolyzers in renewable energy systems, Int. J. Hydrog. Energy 42 (50) (2017) 29648-29660. [4] P. Millet, R. Ngameni, S.A. Grigoriev, V.N. Fateev, Scientific and engineering issues related to PEM technology: water electrolysers, fuel cells and unitized regenerative systems, Int. J. Hydrog. Energy 36 (6) (2011) 4156-4163. [5] G. Correa, P. Marocco, P. Munoz, T. Falaguerra, D. Ferrero, M. Santarelli, Pressurized PEM water electrolysis: Dynamic modelling focusing on the cathode side, Int. J. Hydrog. Energy 47 (7) (2022) 4315-4327. [6] B. Han, S.M. Steen III, J.K. Mo, F.Y. Zhang, Electrochemical performance modeling of a proton exchange membrane electrolyzer cell for hydrogen energy, Int. J. Hydrog. Energy 40 (22) (2015) 7006-7016. [7] H. Gorgun, Dynamic modelling of a proton exchange membrane (PEM) electrolyzer, Int. J. Hydrog. Energy 31 (1) (2006) 29-38. [8] Z. Abdin, C.J. Webb, E.M. Gray, Modelling and simulation of a proton exchange membrane (PEM) electrolyser cell, Int. J. Hydrog. Energy 40 (39) (2015) 13243-13257. [9] N.V. Dale, M.D. Mann, H. Salehfar, Semiempirical model based on thermodynamic principles for determining 6kW proton exchange membrane electrolyzer stack characteristics, J. Power Sources 185 (2) (2008) 1348-1353. [10] R. Datta, D.J. Martino, Y. Dong, P. Choi. Modeling of PEM Water Electrolyzer. PEM Electrolysis for Hydrogen Production-Principles and Applications,CRC Press,Boca Raton, FL, USA,2016. [11] S. Dutta, S. Shimpalee, J.W. Van Zee, Numerical prediction of mass-exchange between cathode and anode channels in a PEM fuel cell, Int. J. Heat Mass Transf. 44 (11) (2001) 2029-2042. [12] C. Marr, X. Li, An engineering model of proton exchange membrane fuel cell performance, ARI Int. J. Phys. Eng. Sci. 50 (4) (1997) 190-200. [13] T. Yigit, O.F. Selamet, Mathematical modeling and dynamic Simulink simulation of high-pressure PEM electrolyzer system, Int. J. Hydrog. Energy 41 (32) (2016) 13901-13914. [14] A. Tabanjat, M. Becherif, M. Emziane, D. Hissel, H.S. Ramadan, B. Mahmah, Fuzzy logic-based water heating control methodology for the efficiency enhancement of hybrid PV-PEM electrolyser systems, Int. J. Hydrog. Energy 40 (5) (2015) 2149-2161. [15] J.T. Pukrushpan, huei Peng, A.G. Stefanopoulou, Control-oriented modeling and analysis for automotive fuel cell systems, J. Dyn. Syst. Meas. Contr. 126 (1) (2004) 14-25. [16] C. Kunusch, P.F. Puleston, M.A. Mayosky, J. Riera, Sliding mode strategy for PEM fuel cells stacks breathing control using a super-twisting algorithm, IEEE Trans. Contr. Syst. Technol. 17 (1) (2009) 167-174. [17] I. Matraji, S. Laghrouche, M. Wack, Pressure control in a PEM fuel cell via second order sliding mode, Int. J. Hydrog. Energy 37 (21) (2012) 16104-16116. [18] A. Majumdar, M. Haas, I. Elliot, S. Nazari, Control and control-oriented modeling of PEM water electrolyzers: a review, Int. J. Hydrog. Energy 48 (79) (2023) 30621-30641. [19] B. Flamm, C. Peter, F.N. Buchi, J. Lygeros, Electrolyzer modeling and real-time control for optimized production of hydrogen gas, Appl. Energy 281 (2021) 116031. [20] R. Findeisen, F. Allgower, An introduction to nonlinear model predictive control. In: 21st Benelux meeting on systems and control, Veldhoven, 2002. [21] M.M. Morato, J.E. Normey-Rico, O. Sename, Model predictive control design for linear parameter varying systems: a survey, Annu. Rev. Contr. 49 (2020) 64-80. [22] J.H. Lee, N.L. Ricker, Extended Kalman filter based nonlinear model predictive control, 1993 American Control Conference. June 2-4, 1993, San Francisco, CA, USA. IEEE, (1993) 1895-1899. [23] M. Korda, I. Mezic, Linear predictors for nonlinear dynamical systems: koopman operator meets model predictive control, Automatica 93 (2018) 149-160. [24] M.O. Williams, I.G. Kevrekidis, C.W. Rowley, A data-driven approximation of the koopman operator: extending dynamic mode decomposition, J. Nonlinear Sci. 25 (6) (2015) 1307-1346. [25] M. Korda, Y. Susuki, I.Mezic, Power grid transient stabilization using Koopman model predictive control, IFAC-PapersOnLine 51 (28) (2018) 297-302. [26] S.H. Son, H.K. Choi, J.S.I. Kwon, Application of offset-free Koopman-based model predictive control to a batch pulp digester, AlChE. J. 67 (9) (2021) e17301. [27] L. Magdalena, Fuzzy rule-based systems. Springer Handbook of Computational Intelligence. Springer Berlin Heidelberg, (2015), pp 03-218. [28] H. Ashraf, M.M. Elkholy, S.O. Abdellatif, A.A. El-Fergany, Synergy of neuro-fuzzy controller and tuna swarm algorithm for maximizing the overall efficiency of PEM fuel cells stack including dynamic performance, Energy Convers. Manag. X 16 (2022) 100301. [29] A.T. Nguyen, T. Taniguchi, L. Eciolaza, V. Campos, R. Palhares, M. Sugeno, Fuzzy control systems: past, present and future, IEEE Comput. Intell. Mag. 14 (1) (2019) 56-68. [30] M.H. Cano, S. Kelouwani, K. Agbossou, Y.Dube, Power management system for off-grid hydrogen production based on uncertainty, Int. J. Hydrog. Energy 40 (23) (2015) 7260-7272. [31] N.A. Spielberg, M. Brown, J.C. Gerdes, Neural network model predictive motion control applied to automated driving with unknown friction, IEEE Trans. Contr. Syst. Technol. 30 (5) (2022) 1934-1945. [32] A. Surana, A. Banaszuk, Linear observer synthesis for nonlinear systems using Koopman Operator framework, IFAC-PapersOnLine 49 (18) (2016) 716-723. [33] A. Surana, Koopman operator framework for time series modeling and analysis, J. Nonlinear Sci. 30 (5) (2020) 1973-2006. [34] J.N. Kutz, S.L. Brunton, B.W. Brunton, J.L. Proctor. Dynamic mode decomposition: data-driven modeling of complex systems. SIAM Press,U.S, 2016. [35] R.R. Yager, J. Kacprzyk, G. Beliakov, Recent Developments in the Ordered Weighted Averaging Operators: Theory and Practice. Springer Berlin Heidelberg, (2011). [36] E.W. Lemmon, M.L. Huber, J.W. Leachman, Revised standardized equation for hydrogen gas densities for fuel consumption applications, J. Res. Natl. Inst. Stand. Technol. 113 (6) (2008) 341-350. |