[1] F. Li, Z. Su, G.M. Wang, An effective integrated control with intelligent optimization for wastewater treatment process, J. Ind. Inf. Integr. 24 (2021) 100237. [2] Z.C. Li, X.F. Yan, Ensemble model of wastewater treatment plant based on rich diversity of principal component determining by genetic algorithm for status monitoring, Contr. Eng. Pract. 88 (2019) 38-51. [3] X.W. Wu, X.L. Zhao, R.Z. Chen, P. Liu, W.G. Liang, J.Y. Wang, M.M. Teng, X. Wang, S.X. Gao, Wastewater treatment plants act as essential sources of microplastic formation in aquatic environments: A critical review, Water Res. 221 (2022) 118825. [4] T.W. Gao, K. Xiao, J. Zhang, W.C. Xue, C.H. Wei, X.P. Zhang, S. Liang, X.M. Wang, X. Huang, Techno-economic characteristics of wastewater treatment plants retrofitted from the conventional activated sludge process to the membrane bioreactor process, Front. Environ. Sci. Eng. 16 (4) (2021) 49. [5] K.N. Lin, J.X. Pei, P.C. Li, J. Ma, Q.L. Li, D.X. Yuan, Simultaneous determination of total dissolved nitrogen and total dissolved phosphorus in natural waters with an on-line UV and thermal digestion, Talanta 185 (2018) 419-426. [6] M.K. Perera, J.D. Englehardt, Simultaneous nitrogen and phosphorus recovery from municipal wastewater by electrochemical pH modulation, Sep. Purif. Technol. 250 (2020) 117166. [7] C. Zhao, L.Y. Chen, G.W. Zhong, Q.Y. Wu, J.X. Liu, X.Y. Liu, A portable analytical system for rapid on-site determination of total nitrogen in water, Water Res. 202 (2021) 117410. [8] H.G. Han, H.J. Zhang, Z. Liu, J.F. Qiao, Data-driven decision-making for wastewater treatment process, Control Eng. Pract. 96 (2020) 104305. [9] S.S. Yang, X.L. Yu, M.Q. Ding, L. He, G.L. Cao, L. Zhao, Y. Tao, J.W. Pang, S.W. Bai, J. Ding, N.Q. Ren, Simulating a combined lysis-cryptic and biological nitrogen removal system treating domestic wastewater at low C/N ratios using artificial neural network, Water Res. 189 (2021) 116576. [10] Y. He, Y.S. Zhu, J.H. Chen, M.S. Huang, P. Wang, G.H. Wang, W.G. Zou, G.M. Zhou, Assessment of energy consumption of municipal wastewater treatment plants in China, J. Clean. Prod. 228 (2019) 399-404. [11] Y. Zhu, B. Lian, Y. Wang, C. Miller, C. Bales, J. Fletcher, L. Yao, T.D. Waite, Machine learning modelling of a membrane capacitive deionization (MCDI) system for prediction of long-term system performance and optimization of process control parameters in remote brackish water desalination, Water Res. 227 (2022) 119349. [12] F. Harrou, A. Dairi, Y. Sun, M. Senouci, Statistical monitoring of a wastewater treatment plant: A case study, J. Environ. Manage. 223 (2018) 807-814. [13] M. Bahramian, R.K. Dereli, W.Q. Zhao, M. Giberti, E. Casey, Data to intelligence: The role of data-driven models in wastewater treatment, Expert Syst. Appl. 217 (2023) 119453. [14] G.C. Zhu, J.M. Chen, S.S. Zhang, Z.L. Zhao, H.H. Luo, A.S. Hursthouse, P. Wan, G.D. Fan, High removal of nitrogen and phosphorus from black-odorous water using a novel aeration-adsorption system, Environ. Chem. Lett. 20 (4) (2022) 2243-2251. [15] J.J. Zhu, S. Borzooei, J.C. Sun, Z.J. Ren, Deep learning optimization for soft sensing of hard-to-measure wastewater key variables, ACS EST Eng. 2 (7) (2022) 1341-1355. [16] M. Andreides, P. Dolejs, J. Bartacek, The prediction of WWTP influent characteristics: Good practices and challenges, J. Water Process. Eng. 49 (2022) 103009. [17] C. Rosen, J.A. Lennox, Multivariate and multiscale monitoring of wastewater treatment operation, Water Res. 35 (14) (2001) 3402-3410. [18] T. Gehring, E. Deineko, I. Hobus, G. Kolisch, M. Lubken, M. Wichern, Effect of sewage sampling frequency on determination of design parameters for municipal wastewater treatment plants, Water Sci. Technol. 84 (2) (2021) 284-292. [19] S.X. Ji, S.R. Pan, E. Cambria, P. Marttinen, P.S. Yu, A survey on knowledge graphs: Representation, acquisition, and applications, IEEE Trans. Neural Netw. Learn. Syst. 33 (2) (2022) 494-514. [20] X.J. Chen, S.B. Jia, Y. Xiang, A review: Knowledge reasoning over knowledge graph, Expert Syst. Appl. 141 (2020) 112948. [21] F. Han, Y.R. Deng, Q.Y. Liu, Y.Z. Zhou, J. Wang, Y.J. Huang, Q.L. Zhang, J. Bian, Construction and application of the knowledge graph method in management of soil pollution in contaminated sites: A case study in South China, J. Environ. Manage. 319 (2022) 115685. [22] C. Xie, D. Liu, Y. Yang, P. Yang, B. Yu, Z. Chen, Q. Feng, J. Peng, Knowledge graph based internet of things middleware, Sep. Purif. Technol. 250(2020) 117166. [23] J.Z. Yan, T.T. Lv, Y.C. Yu, Construction and recommendation of a water affair knowledge graph, Sustainability 10 (10) (2018) 3429. [24] J.D. Rondon Diaz, L.M. Vilches-Blazquez, Characterizing water quality datasets through multi-dimensional knowledge graphs: A case study of the Bogota River Basin, J. Hydroinf. 24 (2) (2022) 295-314. [25] J.Z. Yan, Q.C. Gao, Y.C. Yu, L.H. Chen, Z. Xu, J.H. Chen, Combining knowledge graph with deep adversarial network for water quality prediction, Environ. Sci. Pollut. Res. Int. 30 (4) (2023) 10360-10376. [26] Y.Q. Jiang, C.L. Li, L. Sun, D. Guo, Y.T. Zhang, W.H. Wang, A deep learning algorithm for multi-source data fusion to predict water quality of urban sewer networks, J. Clean. Prod. 318 (2021) 128533. [27] B.Y. Wang, X.D. Li, D.H. Chen, X.H. Weng, Z.Y. Chang, Development of an electronic nose to characterize water quality parameters and odor concentration of wastewater emitted from different phases in a wastewater treatment plant, Water Res. 235 (2023) 119878. [28] J. Wu, H.C. Cheng, Y.Q. Liu, D.P. Huang, L.H. Yuan, L.Y. Yao, Learning soft sensors using time difference-based multi-kernel relevance vector machine with applications for quality-relevant monitoring in wastewater treatment, Environ. Sci. Pollut. Res. Int. 27 (23) (2020) 28986-28999. [29] P. Chang, K. Wang, K. Zheng, F.C. Meng, Monitoring of wastewater treatment process based on multi-stage variational autoencoder, Expert Syst. Appl. 207 (2022) 117919. [30] M. Yurtsever, U. Yurtsever, Use of a convolutional neural network for the classification of microbeads in urban wastewater, Chemosphere 216 (2019) 271-280. [31] Y.X. Li, S.B. Jiao, S.Y. Deng, B. Geng, Y.J. Li, Refined composite variable-step multiscale multimapping dispersion entropy: A nonlinear dynamical index, Nonlinear Dyn. 112 (3) (2024) 2119-2137. [32] Y.X. Li, B.Z. Tang, S.B. Jiao, Y.H. Zhou, Optimized multivariate multiscale slope entropy for nonlinear dynamic analysis of mechanical signals, Chaos Solitons Fractals 179 (2024) 114436. [33] R. Wang, Y.D. Yu, Y.W. Chen, Z.C. Pan, X. Li, Z.L. Tan, J.Q. Zhang, Model construction and application for effluent prediction in wastewater treatment plant: Data processing method optimization and process parameters integration, J. Environ. Manage. 302 (Pt A) (2022) 114020. [34] H. Chen, Z. Tu, S. Wu, G.L. Yu, C.Y. Du, H. Wang, E.Z. Yang, L. Zhou, B. Deng, D.B. Wang, H.L. Li, Recent advances in partial denitrification-anaerobic ammonium oxidation process for mainstream municipal wastewater treatment, Chemosphere 278 (2021) 130436. [35] S.H. Woo, C.O. Jeon, Y.S. Yun, H. Choi, C.S. Lee, D.S. Lee, On-line estimation of key process variables based on kernel partial least squares in an industrial cokes wastewater treatment plant, J. Hazard. Mater. 161 (1) (2009) 538-544. |