[1] S. Ookawara, N. Oozeki, K. Ogawa, P. Lob, V. Hessel, Process intensification of particle separation by lift force in arc microchannel with bifurcation, Chem. Eng. Process. Process. Intensif. 49 (7) (2010) 697-703. [2] J.J. Lerou, A.L. Tonkovich, L. Silva, S. Perry, J. McDaniel, Microchannel reactor architecture enables greener processes, Chem. Eng. Sci. 65 (1) (2010) 380-385. [3] C. Kleinstreuer, J. Li, J. Koo, Microfluidics of nano-drug delivery, Int. J. Heat Mass Transf. 51 (23-24) (2008) 5590-5597. [4] C.H. Cheng, C.K. Chan, G.J. Lai, Shape design of millimeter-scale air channels for enhancing heat transfer and reducing pressure drop, Int. J. Heat Mass Transf. 51 (9-10) (2008) 2335-2345. [5] K.F. Jensen, Microreaction engineering-is small better? Chem. Eng. Sci. 56 (2) (2001) 293-303. [6] A. Pawlowska-Zygarowicz, R. Kukawka, H. Maciejewski, M. Smiglak, Optimization and intensification of hydrosilylation reactions using a microreactor system, New J. Chem. 42 (18) (2018) 15332-15339. [7] M. Damm, T.N. Glasnov, C.O. Kappe, Translating high-temperature microwave chemistry to scalable continuous flow processes, Org. Process Res. Dev. 14 (1) (2010) 215-224. [8] R. Morschhauser, M. Krull, C. Kayser, C. Boberski, R. Bierbaum, P.A. Puschner, T.N. Glasnov, C.O. Kappe, Microwave-assisted continuous flow synthesis on industrial scale, Green Process. Synth. 1 (3) (2012) 281-290. [9] P.R.D. Murray, D.L. Browne, J.C. Pastre, S.V. Ley, Continuous flow-processing of organometallic reagents using an advanced peristaltic pumping system and the telescoped flow synthesis of (E/Z)-tamoxifen, Org. Process Res. Dev. 17 (9) (2013) 1192-1208. [10] M.W. Bedore, N. Zaborenko, K.F. Jensen, T.F. Jamison, Aminolysis of epoxides in a microreactor system: a continuous flow approach to β-amino alcohols, Org. Process Res. Dev. 14 (2) (2010) 432-440. [11] J.M. Commenge, L. Falk, Villermaux-Dushman protocol for experimental characterization of micromixers, Chem. Eng. Process. Process. Intensif. 50 (10) (2011) 979-990. [12] S.H. Wong, M.C.L. Ward, C.W. Wharton, Micro T-mixer as a rapid mixing micromixer, Sens. Actuat. B Chem. 100 (3) (2004) 359-379. [13] J.R. Bourne, F. Kozicki, P. Rys, Mixing and fast chemical reaction-I. Test reactions to determine segregation, Chem. Eng. Sci. 36 (10) (1981) 1643-1648. [14] J.R. Bourne, S.Y. Yu, Investigation of micromixing in stirred tank reactors using parallel reactions, Ind. Eng. Chem. Res. 33 (1) (1994) 41-55. [15] M.C. Fournier, L. Falk, J. Villermaux, A new parallel competing reaction system for assessing micromixing efficiency-experimental approach, Chem. Eng. Sci. 51 (22) (1996) 5053-5064. [16] P. Guichardon, L. Falk, Characterisation of micromixing efficiency by the iodide-iodate reaction system. Part I: experimental procedure, Chem. Eng. Sci. 55 (19) (2000) 4233-4243. [17] B.H. Li, X.C. Lan, T.F. Wang, Intensification of diethyl methylphosphite synthesis based on kinetics study and CFD modeling, AIChE J. 70 (1) (2024) e18264. [18] A. Kölbl, M. Kraut, K. Schubert, The iodide iodate reaction method: on the determination of mixing times from UV measurements, The 2009 AIChE, Spring National, Meeting, USA, 2009. [19] Z.W. Liu, L. Guo, T.H. Huang, L.X. Wen, J.F. Chen, Experimental and CFD studies on the intensified micromixing performance of micro-impinging stream reactors built from commercial T-junctions, Chem. Eng. Sci. 119 (2014) 124-133. [20] H. Ringkai, K.F. Tamrin, N.A. Sheikh, P. Barroy, Characterization of dissimilar liquids mixing in T-junction and offset T-junction microchannels, Proc. Inst. Mech. Eng. Part E J. Process. Mech. Eng. 235 (6) (2021) 1797-1806. [21] K. Yang, G.W. Chu, L. Shao, Y. Xiang, L.L. Zhang, J.F. Chen, Micromixing efficiency of viscous media in micro-channel reactor, Chin. J. Chem. Eng. 17 (4) (2009) 546-551. [22] Z.M. Gao, J. Han, Y.Y. Bao, Z.P. Li, Micromixing efficiency in a T-shaped confined impinging jet reactor, Chin. J. Chem. Eng. 23 (2) (2015) 350-355. [23] H.S. Gaikwad, G. Kumar, P.K. Mondal, Efficient electroosmotic mixing in a narrow-fluidic channel: the role of a patterned soft layer, Soft Matter 16 (27) (2020) 6304-6316. [24] A.N. Manzano Martinez, A. Chaudhuri, M. Assirelli, J. van der Schaaf, Effects of increased viscosity on micromixing in rotor-stator spinning disk reactors, Chem. Eng. J. 434 (2022) 134292. [25] P. Kaushik, S. Shyam, P.K. Mondal, Mixing in small scale fluidic systems swayed by rotationality effects, Phys. Fluids 34 (6) (2022) 062008. [26] S. Shyam, P.K. Mondal, B. Mehta, Magnetofluidic mixing of a ferrofluid droplet under the influence of a time-dependent external field, J. Fluid Mech. 917 (2021) A15. [27] X.Y. Chen, T.C. Li, H. Zeng, Z.L. Hu, B.D. Fu, Numerical and experimental investigation on micromixers with serpentine microchannels, Int. J. Heat Mass Transf. 98 (2016) 131-140. [28] X.Y. Chen, T.C. Li, A novel passive micromixer designed by applying an optimization algorithm to the zigzag microchannel, Chem. Eng. J. 313 (2017) 1406-1414. [29] X.K. Chen, X.Y. Chen, A novel electrophoretic assisted hydrophobic microdevice for enhancing blood cell sorting: design and numerical simulation, Anal. Methods 16 (15) (2024) 2368-2377. [30] X. Shi, Y. Xiang, L.X. Wen, J.F. Chen, CFD analysis of flow patterns and micromixing efficiency in a Y-type microchannel reactor, Ind. Eng. Chem. Res. 51 (43) (2012) 13944-13952. [31] Y. Ouyang, Y. Xiang, H.K. Zou, G.W. Chu, J.F. Chen, Flow characteristics and micromixing modeling in a microporous tube-in-tube microchannel reactor by CFD, Chem. Eng. J. 321 (2017) 533-545. [32] Y. Ouyang, Y. Xiang, X.Y. Gao, H.K. Zou, G.W. Chu, R.K. Agarwal, J.F. Chen, Micromixing efficiency optimization of the premixer of a rotating packed bed by CFD, Chem. Eng. Process. Process. Intensif. 142 (2019) 107543. [33] P. Ritter, A. Osorio-Nesme, A. Delgado, 3D numerical simulations of passive mixing in a microchannel with nozzle-diffuser-like obstacles, Int. J. Heat Mass Transf. 101 (2016) 1075-1085. [34] Y. Ouyang, S.W. Wang, Y. Xiang, Z.M. Zhao, J.X. Wang, L. Shao, CFD analyses of liquid flow characteristics in a rotor-stator reactor, Chem. Eng. Res. Des. 134 (2018) 186-197. [35] Y. Ouyang, Y. Xiang, X.Y. Gao, W.L. Li, H.K. Zou, G.W. Chu, J.F. Chen, Micromixing efficiency in a rotating packed bed with non-Newtonian fluid, Chem. Eng. J. 354 (2018) 162-171. [36] W.P. Li, F.S. Xia, H.Y. Qin, M.Q. Zhang, W. Li, J.L. Zhang, Numerical and experimental investigations of micromixing performance and efficiency in a pore-array intensified tube-in-tube microchannel reactor, Chem. Eng. J. 370 (2019) 1350-1365. [37] H.Z. Li, X. Frank, D. Funfschilling, Y. Mouline, Towards the understanding of bubble interactions and coalescence in non-Newtonian fluids: a cognitive approach, Chem. Eng. Sci. 56 (21-22) (2001) 6419-6425. [38] J.I. Yoshida, A. Nagaki, T. Yamada, Flash chemistry: fast chemical synthesis by using microreactors, Chemistry 14 (25) (2008) 7450-7459. [39] B.Q. Liu, P.F. Gao, N. Sun, Y.K. Zhang, Z.J. Jin, B. Sunden, Experimental investigation on micromixing characteristics of coaxial mixers in viscous system, Can. J. Chem. Eng. 98 (8) (2020) 1815-1824. [40] Y.C. Yang, X.H. Yu, Q.J. Yu, S.Y. Yang, M. Arowo, Micromixing efficiency in a multiphase reactor with a foam block stirrer, Can. J. Chem. Eng. 97 (S1) (2019) 1560-1567. [41] J.R. Bourne, Comments on the iodide/iodate method for characterising micromixing, Chem. Eng. J. 140 (2008) 638-641. [42] A. Kolbl, M. Kraut, R. Dittmeyer, Kinetic investigation of the Dushman reaction at concentrations relevant to mixing studies in microstructured cyclone type mixers, Chem. Eng. Sci. 101 (2013) 454-460. [43] P. Guichardon, L. Falk, J. Villermaux, Characterisation of micromixing efficiency by the iodide-iodate reaction system. Part II: kinetic study, Chem. Eng. Sci. 55 (19) (2000) 4245-4253. [44] T.Y. Guo, X. Shi, G.W. Chu, Y. Xiang, L.X. Wen, J.F. Chen, Computational fluid dynamics analysis of the micromixing efficiency in a rotating-packed-bed reactor, Ind. Eng. Chem. Res. 55 (17) (2016) 4856-4866. [45] X.H. Yang, W.L. Zhu, Viscosity properties of sodium carboxymethylcellulose solutions, Cellulose 14 (5) (2007) 409-417. [46] D. Pfund, D. Rector, A. Shekarriz, A. Popescu, J. Welty, Pressure drop measurements in a microchannel, AIChE J. 46 (8) (2000) 1496-1507. [47] O. Mokrani, B. Bourouga, C. Castelain, H. Peerhossaini, Fluid flow and convective heat transfer in flat microchannels, Int. J. Heat Mass Transf. 52 (5-6) (2009) 1337-1352. [48] N. Kockmann, S. Dreher, P. Woias, Unsteady laminar flow regimes and mixing in T-shaped micromixers, In: ASME 5th International Conference on Nanochannels, Microchannels, and Minichannels, Puebla, Mexico, 2007. [49] A. Benchabane, K. Bekkour, Rheological properties of carboxymethyl cellulose (CMC) solutions, Colloid Polym. Sci. 286 (10) (2008) 1173-1180. [50] H.A. Barnes, J.F. Hutton, K. Walters, An Introduction to Rheology, Elsevier, Amsterdam, 1989. [51] M.P. Escudier, P.J. Oliveira, F.T. Pinho, Fully developed laminar flow of purely viscous non-Newtonian liquids through annuli, including the effects of eccentricity and inner-cylinder rotation, Int. J. Heat Fluid Flow 23 (1) (2002) 52-73. [52] K. Guo, F. Guo, Y.D. Feng, J.F. Chen, C. Zheng, N.C. Gardner, Synchronous visual and RTD study on liquid flow in rotating packed-bed contactor, Chem. Eng. Sci. 55 (9) (2000) 1699-1706. [53] K.P. Cheng, C.Y. Liu, T.Y. Guo, L.X. Wen, CFD and experimental investigations on the micromixing performance of single countercurrent-flow microchannel reactor, Chin. J. Chem. Eng. 27 (5) (2019) 1079-1088. [54] M. Xiong, J.D. Yang, X.H. Ding, H. Li, H. Zhang, Topology optimization design of micromixer based on principle of Tesla valve: an experimental and numerical study, Chem. Eng. Process. Process. Intensif. 193 (2023) 109560. |