[1] B.Y. Bai, L.Y. Qiang, S.S. Zhang, H. Mu, X.X. Ma, Influence of coal structure change caused by different pretreatment methods on Shengli lignite pyrolysis, Fuel 332 (2023) 126089. [2] X.C. Liu, J. Hu, R.L. Xie, B. Fang, P. Cui, Formation mechanism of solid product produced from co-pyrolysis of Pingdingshan lean coal with organic matter in Huadian oil shale, Front. Chem. Sci. Eng. 15 (2) (2021) 363-372. [3] B. Tian, W.Y. Zhao, Q.J. Guo, Y.Y. Tian, A comprehensive understanding of synergetic effect and volatile interaction mechanisms during co-pyrolysis of rice husk and different rank coals, Energy 254 (2022) 124388. [4] T.I. Ohm, J.S. Chae, J.H. Lim, S.H. Moon, Evaluation of a hot oil immersion drying method for the upgrading of crushed low-rank coal, J. Mech. Sci. Technol. 26 (4) (2012) 1299-1303. [5] Y.Q. Zhao, M. Zhang, X.T. Cui, D.L. Dong, Q. Wang, Y.F. Zhang, Converting lignite to caking coal via hydro-modification in a subcritical water-CO system, Fuel 167 (2016) 1-8. [6] X.C. Liu, Q. Ling, Z.G. Zhao, R.L. Xie, D.L. Yu, Q.P. Ke, Z. Lei, P. Cui, Effects of low-temperature rapid pyrolysis treatment on the improvement in caking property of a Chinese sub-bituminous coal, J. Anal. Appl. Pyrolysis 135 (2018) 319-326. [7] H.F. Shui, Y. Wu, Z.C. Wang, Z.P. Lei, C.H. Lin, S.B. Ren, C.X. Pan, S.G. Kang, Hydrothermal treatment of a sub-bituminous coal and its use in coking blends, Energy Fuels 27 (1) (2013) 138-144. [8] D. Freudenmann, S. Wolf, M. Wolff, C. Feldmann, Ionic liquids: new perspectives for inorganic synthesis? Angew. Chem. Int. Ed 50 (47) (2011) 11050-11060. [9] R. Kore, R. Srivastava, Synthesis and applications of highly efficient, reusable, sulfonic acid group functionalized Bronsted acidic ionic liquid catalysts, Catal. Commun. 12 (15) (2011) 1420-1424. [10] A.C. Cole, J.L. Jensen, I. Ntai, K.L. Tran, K.J. Weaver, D.C. Forbes, J.H. Davis Jr, Novel Broensted acidic ionic liquids and their use as dual solvent-catalysts, J. Am. Chem. Soc. 124 (21) (2002) 5962-5963. [11] D. Fang, J.M. Yang, C.M. Jiao, Dicationic ionic liquids as environmentally benign catalysts for biodiesel synthesis, ACS Catal. 1 (1) (2011) 42-47. [12] W.L. Mo, X.Q. He, Y.Y. Ma, J. Ma, Y.J. Ma, F.Y. Ma, X. Fan, X.Y. Wei, Effect of swelling with ionic liquid on the molecular structure and pyrolysis behavior of Hefeng sub-bituminous coal, Energy Fuels 34 (12) (2020) 16099-16108. [13] G.H. Ni, H. Wang, B.S. Nie, Y. Wang, H.R. Dou, S.Q. Lu, G. Wang, Research of wetting selectivity and wetting effect of imidazole ionic liquids on coal, Fuel 286 (2021) 119331. [14] W.B. Han, G. Zhou, M.Y. Xing, Y. Yang, X.Y. Zhang, Y.N. Miao, Y.M. Wang, Experimental investigation on physicochemical characteristics of coal treated with synthetic sodium salicylate-imidazole ionic liquids, J. Mol. Liq. 327 (2021) 114822. [15] J. Cummings, P. Tremain, K. Shah, E. Heldt, B. Moghtaderi, R. Atkin, S. Kundu, H. Vuthaluru, Modification of lignites via low temperature ionic liquid treatment, Fuel Process. Technol. 155 (2017) 51-58. [16] X.C. Liu, G.Q. Li, H.Y. Zhao, Y.G. Ye, R.L. Xie, Z.G. Zhao, Z. Lei, P. Cui, Changes in caking properties of caking bituminous coals during low-temperature pyrolysis process, Fuel 321 (2022) 124023. [17] C. Chen, T.T. Yu, M. Yang, X.Y. Zhao, X.D. Shen, An all-solid-state rechargeable chloride ion battery, Adv. Sci. 6 (6) (2019) 1802130. [18] J. Cummings, K. Shah, R. Atkin, B. Moghtaderi, Physicochemical interactions of ionic liquids with coal; the viability of ionic liquids for pre-treatments in coal liquefaction, Fuel 143 (2015) 244-252. [19] Y. Xiao, H. Zhang, K.H. Liu, C.M. Shu, Macrocharacteristics and the inhibiting effect of coal spontaneous combustion with various treatment durations of ionic liquids, Thermochim. Acta 703 (2021) 179012. [20] S. Li, G.H. Ni, B.S. Nie, S.Q. Lu, X.J. Li, G. Wang, Microstructure characteristics of lignite under the synergistic effect of oxidizing acid and ionic liquid [Bmim] [Cl, Fuel 289 (2021) 119940. [21] H.T. Li, D.Y. Cao, W.G. Zhang, L. Wang, XRD and Raman spectroscopy characterization of graphitization trajectories of high-rank coal, Spectrosc. Spect. Anal. 41 (8) (2021) 2491-2498. [22] J. Xu, H. Tang, S. Su, J.W. Liu, H.D. Han, L.P. Zhang, K. Xu, Y. Wang, S. Hu, Y.B. Zhou, J. Xiang, Micro-Raman spectroscopy study of 32 kinds of Chinese coals: second-order Raman spectrum and its correlations with coal properties, Energy Fuels 31 (8) (2017) 7884-7893. [23] Q.C. He, X. Jiang, J. Xu, C. Wang, M. Jiang, G. Wang, L. Jiang, K. Xu, Y. Wang, S. Su, S. Hu, J. Xiang, Heterogeneous chemical structures of single pulverized coal particles and their evolution during pyrolysis: Insight from micro-Raman mapping technique, Powder Technol. 420 (2023) 118385. [24] X.C. Liu, G.Q. Li, H.Y. Zhao, F. Cheng, R.L. Xie, Z.G. Zhao, P. Cui, Upgrading deashed Huadian oil shale using low-temperature pyrolysis treatment and its application in coal-blending coking, Fuel Process. Technol. 223 (2021) 106994. [25] J.P. Mathews, A.L. Chaffee, The molecular representations of coal-A review, Fuel 96 (2012) 1-14. |