[1] K. Holmberg, A. Erdemir, Influence of tribology on global energy consumption, costs and emissions, Friction 5 (3) (2017) 263-284. [2] Q.Q. Zhang, H. Song, B. Wu, W.M. Feng, X.Y. Li, Y. Jiao, X.G. Hu, Effect of magnetic field on the tribological behaviors of Fe3O4@MoS2 as polyalphaolefin additive in the steel/steel friction interface, Wear 466 (2021) 203586. [3] V.S. Saji, Carbon nanostructure-based superhydrophobic surfaces and coatings, Nanotechnol. Rev. 10 (1) (2021) 518-571. [4] P.F. Zhang, Z.N. Qiao, S. Dai, Recent advances in carbon nanospheres: synthetic routes and applications, Chem. Commun. 51 (45) (2015) 9246-9256. [5] D. He, Y. Gao, Z.P. Wang, Y.C. Yao, L. Wu, J. Zhang, Z.H. Huang, M.X. Wang, One-step green fabrication of hierarchically porous hollow carbon nanospheres (HCNSs) from raw biomass: Formation mechanisms and supercapacitor applications, J. Colloid Interface Sci. 581 (Pt A) (2021) 238-250. [6] R.R. Li, H.Y. Mao, M.H. Zhu, Y.D. Yang, J.J. Xiong, W.B. Wang, Facile preparation of broadband absorbers based on patternable candle soot for applications of optical sensors, Sens. Actuat. A Phys. 285 (2019) 111-117. [7] H.F. Gao, W.W. Wang, Z.X. Wang, J. Han, Z.F. Fu, Amorphous carbon nanoparticle used as novel resonance energy transfer acceptor for chemiluminescent immunoassay of transferrin, Anal. Chim. Acta 819 (2014) 102-107. [8] G.W. Huang, Q.L. Yu, Z.F. Ma, M.R. Cai, F. Zhou, W.M. Liu, Fluorinated candle soot as the lubricant additive of perfluoropolyether, Tribol. Lett. 65 (1) (2017) 28. [9] K.B. Pu, J.Y. Gao, W.F. Cai, Q.Y. Chen, K. Guo, Y. Huang, S.H. Gao, Y.H. Wang, A new modification method of metal substrates via candle soot to prepare effective anodes in air-cathode microbial fuel cells, J. Chem. Technol. Biotechnol. 97 (1) (2022) 189-198. [10] X. Deng, L. Mammen, H.J. Butt, D. Vollmer, Candle soot as a template for a transparent robust superamphiphobic coating, Science 335 (6064) (2012) 67-70. [11] J.X. Wei, M.R. Cai, F. Zhou, W.M. Liu, Candle soot as particular lubricant additives, Tribol. Lett. 53 (3) (2014) 521-531. [12] T.X. Liu, J. Wang, K. Kang, J. Qin, Z.Q. Tang, Preparation, characterization and tribological properties of coal indirect liquefied diesel soot modified by oleylamine, Appl. Surf. Sci. 550 (2021) 149351. [13] C. Li, X.G. Hu, Basic properties of biodiesel soot. Biodiesel Soot. Elsevier, (2021), pp 7-90. [14] R. Nowduru, B.R. Bodapati, P.K. Penumakala, S.R.K. Malladi, P.K. Jain, V.V.S.S. Srikanth, Carbon soot nanoparticles derived from wasted rubber: an additive in lubricating oil for efficient friction and wear reduction, Diam. Relat. Mater. 126 (2022) 109050. [15] A.H. Al-Muhtaseb, A.I. Osman, P.S. Murphin Kumar, F. Jamil, L. Al-Haj, A. Al Nabhani, H.H. Kyaw, M.T.Z. Myint, N. Mehta, D.W. Rooney, Circular economy approach of enhanced bifunctional catalytic system of CaO/CeO2 for biodiesel production from waste loquat seed oil with life cycle assessment study, Energy Convers. Manag. 236 (2021) 114040. [16] M. Rangasamy, G. Duraisamy, N. Govindan, A comprehensive parametric, energy and exergy analysis for oxygenated biofuels based dual-fuel combustion in an automotive light duty diesel engine, Fuel 277 (2020) 118167. [17] C. Li, M.L. Li, X.Y. Wang, W.M. Feng, Q.Q. Zhang, B. Wu, X.G. Hu, Novel carbon nanoparticles derived from biodiesel soot as lubricant additives, Nanomaterials 9 (8) (2019) 1115. [18] C. Li, H. Song, J. Zhang, B. Wu, Q.Q. Zhang, Y. Zhuang, X.G. Hu, Novel approach for improved tribological behavior of biodiesel soot in liquid paraffin, China Petrol. Process. Petrochem. Technol. 21 (1) (2019) 101-109. [19] M. Sarkar, N. Mandal, Solid lubricant materials for high temperature application: a review, Mater. Today Proc. 66 (2022) 3762-3768. [20] L.P. Wu, F. Wang, C.W. Zhang, X.H. Zhang, L. Gu, W.J. Shi, Silver/graphene nanocomposite as an additive for aqueous lubrication, ACS Appl. Nano Mater. 6 (3) (2023) 1603-1609. [21] N. Nyholm, N. Espallargas, Functionalized carbon nanostructures as lubricant additives-A review, Carbon 201 (2023) 1200-1228. [22] H. Ghaednia, M.S. Hossain, R.L. Jackson, Tribological performance of silver nanoparticle-enhanced polyethylene glycol lubricants, tribol trans 59 (4) (2016) 585-592. [23] J.Q. Ma, Y.F. Mo, M.W. Bai, Effect of Ag nanoparticles additive on the tribological behavior of multialkylated cyclopentanes (MACs), Wear 266 (7-8) (2009) 627-631. [24] A.A. Kuzharov, A.A. Milov, J.S. Gerasina, M.A. Soldatov, V.V. Butova, A.V. Soldatov, Effect of a stabilizer on the structure, synthesis, and tribological properties of silver nanoparticles, Proc. Inst. Mech. Eng. Part J J. Eng. Tribol. 237 (3) (2023) 601-610. [25] R. Chinnachamy, V. Durairaj, M. Saravanamuthu, V. Rajagopal, Evaluation of the effect of silver nanoparticles on the tribological and thermophysical properties of bio-lubricants, Proc. Inst. Mech. Eng. Part E J. Process. Mech. Eng. 237 (2) (2023) 410-417. [26] G.B. Tang, F.H. Su, X. Xu, P.K. Chu, 2D black phosphorus dotted with silver nanoparticles: an excellent lubricant additive for tribological applications, Chem. Eng. J. 392 (2020) 123631. [27] B.B. Chen, M.J. Zhang, K. Zhang, Z. Dong, J.Y. Li, G. Zhao, Mono-dispersed Ag nanoparticles decorated graphitic carbon nitride: an excellent lubricating additive as PPESK composite film, Friction 10 (5) (2022) 717-731. [28] L. Wang, P.W. Gong, W. Li, T. Luo, B.Q. Cao, Mono-dispersed Ag/Graphene nanocomposite as lubricant additive to reduce friction and wear, Tribol. Int. 146 (2020) 106228. [29] M. Hemmat Esfe, S. Alidoust, E. Mohammadnejad Ardeshiri, D. Toghraie, Comparative rheological study on hybrid nanofluids with the same structure of MWCNT (50%)-ZnO(50%)/SAE XWX to select the best performance of nano-lubricants using response surface modeling, Colloids Surf. A Physicochem. Eng. Aspects 641 (2022) 128543. [30] D. Toghraie, S.N. Hosseini Tamrabad, S. Alidoust, H. Hatami, Obtaining the optimal lubrication conditions by investigating the viscosity of MWCNT (25%)-TiO2(75%)/oil SAE40 hybrid nanofluid by response surface methodology, Tribol. Int. 186 (2023) 108585. [31] X.Y. Song, X.B. Liu, A. Zhou, F.Z. Zhang, Z.Y. Liu, J. Xia, S.H. Zhang, Effect of mixing entropy on nano-scratching behavior in FCC polycrystalline MPEAs: a comprehensive study by molecular dynamics simulation and experiment integration, Tribol. Int. 200 (2024) 110088. [32] Y.L. Li, Q. Wang, S.J. Wang, A review on enhancement of mechanical and tribological properties of polymer composites reinforced by carbon nanotubes and graphene sheet: Molecular dynamics simulations, Compos. Part B Eng. 160 (2019) 348-361. [33] A. Cammarata, E. Perviz, T. Polcar, Current perspective towards a general framework to describe and harness friction at the nanoscale, Prog. Surf. Sci. 99 (3) (2024) 100753. [34] C. Kumara, H.M. Luo, D.N. Leonard, H.M. Meyer, J. Qu, Organic-modified silver nanoparticles as lubricant additives, ACS Appl. Mater. Interfaces 9 (42) (2017) 37227-37237. [35] Y.F. Xu, Z.C. Liu, K.D. Dearn, Y.H. Dong, T. You, X.G. Hu, Thermo-tribological behaviour of microgels for improved aqueous lubrication for steel/UHMWPE contact, Tribol. Int. 130 (2019) 63-73. [36] B.B. Wang, E.Z. Hu, Z.Q. Tu, K.D. David, K.H. Hu, X.G. Hu, W. Yang, J.H. Guo, W.M. Cai, W.L. Qian, H. Zhang, Characterization and tribological properties of rice husk carbon nanoparticles Co-doped with sulfur and nitrogen, Appl. Surf. Sci. 462 (2018) 944-954. [37] E.Z. Hu, X.G. Hu, T.X. Liu, L. Fang, K.D. Dearn, H.M. Xu, The role of soot particles in the tribological behavior of engine lubricating oils, Wear 304 (1-2) (2013) 152-161. [38] Y. Meng, F.H. Su, Y.Z. Chen, Effective lubricant additive of nano-Ag/MWCNTs nanocomposite produced by supercritical CO2 synthesis, Tribol. Int. 118 (2018) 180-188. [39] C.Y. Chen, W.L. Huang, Aggregation kinetics of diesel soot nanoparticles in wet environments, Environ. Sci. Technol. 51 (4) (2017) 2077-2086. [40] C. Li, D.Z. Wei, Y. Zhuang, R.H. Song, X.G. Hu, Effect of biodiesel soot on tribological behavior of liquid paraffin, China Petrol. Process. Petrochem. Technol. 20 (3) (2018) 106-113. [41] L. Zheng, G.N. Zhang, M. Zhang, S.H. Guo, Z.H. Liu, Preparation and capacitance performance of Ag-graphene based nanocomposite, J. Power Sources 201 (2012) 376-381. [42] W.M. Feng, H. Song, Z.Y. Lu, Zhiquan Yang, X.G. Hu, On the mechanical and tribological performances of the tribofilm formed by zinc dialkyl dithiophosphate, J. Ind. Eng. Chem. 122 (2023) 152-160. [43] B. Shi, J.H. Guo, X.A. Cao, E.Z. Hu, K.H. Hu, Effects of carbon soot from the combustion of diesel fuels on the tribological properties of lubricating oil and diesel fuels, Ind. Lubr. Tribol. 70 (3) (2018) 532-537. [44] W.W. Tang, X.J. Zhu, Y.F. Li, Tribological performance of various metal-doped carbon dots as water-based lubricant additives and their potential application as additives of poly(ethylene glycol), Friction 10 (5) (2022) 688-705. [45] J.H. Wang, X.R. Li, Y.Y. Deng, S.H. Chen, W.F. Liang, L.X. Zhang, X.Y. Wei, S.Y. Gao, Y. Wan, Carbon quantum dots doped with silver as lubricating oil additive for enhancing tribological performance at various temperatures, Appl. Surf. Sci. 599 (2022) 154029. [46] B. Wu, L.B. Wu, C. Li, Z.J. Yuan, Q. Wu, C.G. Wang, L. Xu, Y. Qin, X.G. Hu, C.R. Li, Superdispersed spherical fullerenol and lamellar graphene oxide synergize to enhance the antiwear properties of water-based lubricants: Mathematical model and mechanism investigation, Wear 554 (2024) 205481. |