Chinese Journal of Chemical Engineering ›› 2025, Vol. 82 ›› Issue (6): 39-56.DOI: 10.1016/j.cjche.2024.04.031
Previous Articles Next Articles
Donghai Sheng1, Lin Zhang1, Guo Yang1, Baoming Guo1, Longsheng Lin1, Yongqi Shi1, Song Yuan1, Jinnan Wang1, Yuan Li2, Beibei Feng1
Received:2023-11-25
Revised:2024-04-10
Accepted:2024-04-11
Online:2025-03-11
Published:2025-08-19
Contact:
Donghai Sheng,E-mail:shengdonghai@mail.tsinghua.edu.cn;Lin Zhang,E-mail:zhanglin2020@mail.tsinghua.edu.cn;Yuan Li,E-mail:liyuan@cqmu.edu.cn
Supported by:Donghai Sheng1, Lin Zhang1, Guo Yang1, Baoming Guo1, Longsheng Lin1, Yongqi Shi1, Song Yuan1, Jinnan Wang1, Yuan Li2, Beibei Feng1
通讯作者:
Donghai Sheng,E-mail:shengdonghai@mail.tsinghua.edu.cn;Lin Zhang,E-mail:zhanglin2020@mail.tsinghua.edu.cn;Yuan Li,E-mail:liyuan@cqmu.edu.cn
基金资助:Donghai Sheng, Lin Zhang, Guo Yang, Baoming Guo, Longsheng Lin, Yongqi Shi, Song Yuan, Jinnan Wang, Yuan Li, Beibei Feng. Preparation and modification of membranes for extracorporeal membrane oxygenator: A review[J]. Chinese Journal of Chemical Engineering, 2025, 82(6): 39-56.
Donghai Sheng, Lin Zhang, Guo Yang, Baoming Guo, Longsheng Lin, Yongqi Shi, Song Yuan, Jinnan Wang, Yuan Li, Beibei Feng. Preparation and modification of membranes for extracorporeal membrane oxygenator: A review[J]. 中国化学工程学报, 2025, 82(6): 39-56.
Add to citation manager EndNote|Ris|BibTeX
URL: https://cjche.cip.com.cn/EN/10.1016/j.cjche.2024.04.031
| [1] P. Leprince, A. Combes, N. Bonnet, A. Ouattara, C.E. Luyt, P. Theodore, P. Leger, A. Pavie, Circulatory support for fulminant myocarditis: consideration for implantation, weaning and explantation, Eur. J. Cardiothorac Surg. 24 (3) (2003) 399-403. [2] Y.S. Chen, J.W. Lin, H.Y. Yu, W.J. Ko, J.S. Jerng, W.T. Chang, W.J. Chen, S.C. Huang, N.H. Chi, C.H. Wang, L.C. Chen, P.R. Tsai, S.S. Wang, J.J. Hwang, F.Y. Lin, Cardiopulmonary resuscitation with assisted extracorporeal life-support versus conventional cardiopulmonary resuscitation in adults with in-hospital cardiac arrest: an observational study and propensity analysis, Lancet 372 (9638) (2008) 554-561. [3] N.G. Smedira, N. Moazami, C.M. Golding, P.M. McCarthy, C. Apperson-Hansen, E.H. Blackstone, D.M. Cosgrove, Clinical experience with 202 adults receiving extracorporeal membrane oxygenation for cardiac failure: Survival at five years, J. Thorac. Cardiovasc. Surg. 122 (1) (2001) 92-102. [4] E. Valencia, V.G. Nasr, Updates in pediatric extracorporeal membrane oxygenation, J. Cardiothorac. Vasc. Anesth. 34 (5) (2020) 1309-1323. [5] O.O. Teber, A.D. Altinay, S. Ali Naziri Mehrabani, R.S. Tasdemir, B. Zeytuncu, E.A. Genceli, E. Dulekgurgen, K. Pekkan, I. Koyuncu, Polymeric hollow fiber membrane oxygenators as artificial lungs: a review, Biochem. Eng. J. 180 (2022) 108340. [6] T. Yeager, S. Roy, Evolution of gas permeable membranes for extracorporeal membrane oxygenation, Artif. Organs 41 (8) (2017) 700-709. [7] A.K. Evseev, S.V. Zhuravel, A.Y. Alentiev, I.V. Goroncharovskaya, S.S. Petrikov, Membranes in extracorporeal blood oxygenation technology, Membr. Membr. Technol. 1 (4) (2019) 201-211. [8] R.H. Bartlett, L. Gattinoni, Current status of extracorporeal life support (ECMO) for cardiopulmonary failure, Minerva Anestesiol. 76 (7) (2010) 534-540. [9] U. Pollak, Heparin-induced thrombocytopenia complicating extracorporeal membrane oxygenation support: Review of the literature and alternative anticoagulants, J. Thromb. Haemost. 17 (10) (2019) 1608-1622. [10] M.B. Gorbet, M.V. Sefton, Biomaterial-associated thrombosis: roles of coagulation factors, complement, platelets and leukocytes, Biomaterials 25 (26) (2004) 5681-5703. [11] T. Morioka, H. Terasaki, The first attempt of CO2 removal with an artificial heart-lung machine: revisited a quarter of century later, J. Anesth. 5 (1) (1991) 103-104. [12] J.D. Hill, T.G. O’Brien, J.J. Murray, L. Dontigny, M.L. Bramson, J.J. Osborn, F. Gerbode, Prolonged extracorporeal oxygenation for acute post-traumatic respiratory failure (shock-lung syndrome). Use of the Bramson membrane lung, N. Engl. J. Med. 286 (12) (1972) 629-634. [13] M.C. Belanger, Y. Marois, Hemocompatibility, biocompatibility, inflammatory and in vivo studies of primary reference materials low-density polyethylene and polydimethylsiloxane: a review, J. Biomed. Mater. Res. 58 (5) (2001) 467-477. [14] J.E. Millar, J.P. Fanning, C.I. McDonald, D.F. McAuley, J.F. Fraser, The inflammatory response to extracorporeal membrane oxygenation (ECMO): a review of the pathophysiology, Crit. Care 20 (1) (2016) 387. [15] H.J. Cho, D.W. Kim, G.S. Kim, I.S. Jeong, Anticoagulation therapy during extracorporeal membrane oxygenator support in pediatric patients, Chonnam Med. J. 53 (2) (2017) 110-117. [16] D. Bohn, Pushing the boundaries for the use of ECMO in acute hypoxic respiratory failure, Intensive Care Med. 31 (7) (2005) 896-897. [17] A. Davies, D.A. Jones, M. Bailey, J. Beca, R. Bellomo, N. Blackwell, P. Forrest, D. Gattas, E. Granger, R. Herkes, A. Jackson, S. McGuinness, P. Nair, V. Pellegrino, V. Pettila, B. Plunkett, R. Pye, P. Torzillo, S. Webb, M. Wilson, M. Ziegenfuss, Extracorporeal membrane oxygenation for 2009 influenza a(H1N1) acute respiratory distress syndrome, JAMA 302 (2009) 1888-1895. [18] M. Czekajlo, M. Dabrowski, M. Puslecki, A. Drozd, L. Szarpak, Using ECMO VV in the COVID-19 pandemic, Disaster Emerg. Med. J. (2020) 114-115. [19] P. Suwalski, J. Staromlynski, J. Braczkowski, M. Bartczak, S. Mariani, D. Drobinski, K. Szuldrzynski, R. Smoczynski, M. Franczyk, W. Sarnowski, A. Gajewska, A. Witkowska, W. Wierzba, A. Zaczynski, Z. Krol, E. Olek, M. Pasierski, J.M. Ravaux, M.E. de Piero, R. Lorusso, M.. Kowalewski, Transition from simple V-V to V-A and hybrid ECMO configurations in COVID-19 ARDS, Membranes 11 (6) (2021) 434. [20] G.H.A. Clowes, A.L. Hopkins, W.E. Neville, An artificial lung dependent upon diffusion of oxygen and carbon dioxide through plastic membranes, J. Thorac. Surg. 32 (5) (1956) 630-637. [21] A.B. Cassie, A.G. Riddell, P.O. Yates, Hazard of antifoam emboli from a bubble oxygenator, Thorax 15 (1) (1960) 22-29. [22] M.W. Lim, The history of extracorporeal oxygenators, Anaesthesia 61 (10) (2006) 984-995. [23] W.J. Kolff, R. Balzer, M.D. Cleveland, The artificial coil long. Asaio J. 1 (1955) 39-42. [24] G.H.A. Clowes Jr., W.E. Neville, Further development of a blood oxygenator dependent upon the diffusion of gases through plastic membranes. Asaio J. 3 (1) (1957) 52-58. [25] W.M. Zapol, M.T. Snider, J.D. Hill, R.J. Fallat, R.H. Bartlett, L.H. Edmunds, A.H. Morris, E.C. Peirce 2nd, A.N. Thomas, H.J. Proctor, P.A. Drinker, P.C. Pratt, A. Bagniewski, R.G. Miller Jr, Extracorporeal membrane oxygenation in severe acute respiratory failure. A randomized prospective study, JAMA 242 (20) (1979) 2193-2196. [26] T. He, J.H. He, Z.H. Wang, Z.L. Cui, Modification strategies to improve the membrane hemocompatibility in extracorporeal membrane oxygenator (ECMO), Adv. Compos. Hybrid Mater. 4 (4) (2021) 847-864. [27] J.M. Toomasian, R.J. Schreiner, D.E. Meyer, M.E. Schmidt, S.E. Hagan, G.W. Griffith, R.H. Bartlett, K.E. Cook, A polymethylpentene fiber gas exchanger for long-term extracorporeal life support, ASAIO J. 51 (4) (2005) 390-397. [28] K. Suma, T. Tsuji, Y. Takeuchi, K. Inoue, K. Shiroma, T. Yoshikawa, J. Narumi, Clinical performance of microporous polypropylene hollow-fiber oxygenator, Ann. Thorac. Surg. 32 (6) (1981) 558-562. [29] J. Hadaya, P. Benharash, Extracorporeal membrane oxygenation, JAMA 323 (24) (2020) 2536. [30] T. Straube, I.M. Cheifetz, K.W. Jackson, Extracorporeal membrane oxygenation for hemodynamic support, Clin. Perinatol. 47 (3) (2020) 671-684. [31] S. Breiter, Membranes for oxygenators and plasma filters. Biomaterials for Artificial Organs. Elsevier, (2011), pp -33. [32] A. Martins Costa, F.R. Halfwerk, J.N. Thiel, B. Wiegmann, M. Neidlin, J. Arens, Effect of hollow fiber configuration and replacement on the gas exchange performance of artificial membrane lungs, J. Membr. Sci. 680 (2023) 121742. [33] F. Porcheron, S. Drozdz, Hollow fiber membrane contactor transient experiments for the characterization of gas/liquid thermodynamics and mass transfer properties, Chem. Eng. Sci. 64 (2) (2009) 265-275. [34] P. Keshavarz, J. Fathikalajahi, S. Ayatollahi, Analysis of CO2 separation and simulation of a partially wetted hollow fiber membrane contactor, J. Hazard. Mater. 152 (3) (2008) 1237-1247. [35] C. Nigro Neto, G. Landoni, M.A. Tardelli, A novel anti-pollution filter for volatile agents during cardiopulmonary bypass: preliminary tests, J. Cardiothorac. Vasc. Anesth. 31 (4) (2017) 1218-1222. [36] M. Moroi, M. Force, S.G. Wang, A.R. Kunselman, A. Undar, In vitro comparison of pediatric oxygenators with and without integrated arterial filters in maintaining optimal hemodynamic stability and managing gaseous microemboli, Artif. Organs 42 (4) (2018) 420-431. [37] I. Condello, R. Lorusso, G. Santarpino, F. Fiore, G. Nasso, G. Speziale, Clinical evaluation of micro-embolic activity with unexpected predisposing factors and performance of horizon AF PLUS during cardiopulmonary bypass, Membranes 12 (5) (2022) 465. [38] B. Meyns, L. Vercaemst, E. Vandezande, H. Bollen, D. Vlasselaers, Plasma leakage of oxygenators in ECMO depends on the type of oxygenator and on patient variables, Int. J. Artif. Organs 28 (1) (2005) 30-34. [39] A.D. Milano, M. Dodonov, F. Onorati, T. Menon, L. Gottin, G. Malerba, A. Mazzucco, G. Faggian, Pulsatile flow decreases gaseous micro-bubble filtering properties of oxygenators without integrated arterial filters during cardiopulmonary bypass, Interact. Cardiovasc. Thorac. Surg. 17 (5) (2013) 811-817. [40] C. Hamilton, D. Marin, F. Weinbrenner, B. Engelhardt, D. Rosenzweig, U. Beck, P. Borisov, S. Hohe, A new method to measure oxygenator oxygen transfer performance during cardiopulmonary bypass: clinical testing using the Medtronic Fusion oxygenator, Perfusion 32 (2) (2017) 133-140. [41] J. Noora, A. Lamy, K.M. Smith, R. Kent, D. Batt, J. Fedoryshyn, X.Y. Wang, The effect of oxygenator membranes on blood: a comparison of two oxygenators in open-heart surgery, Perfusion 18 (5) (2003) 313-320. [42] M. Pieri, O.G. Turla, M.G. Calabro, L. Ruggeri, N. Agracheva, A. Zangrillo, F. Pappalardo, A new phosphorylcholine-coated polymethylpentene oxygenator for extracorporeal membrane oxygenation: a preliminary experience, Perfusion 28 (2) (2013) 132-137. [43] A.B. Hodge, M.A. Deitemyer, V.L. Duffy, D. Tumin, D.A. Garbin, K.K. Nicol, D. Hayes Jr, M.J. Cismowski, A.R. Yates, Plasma free hemoglobin generation using the EOS PMP? oxygenator and the CentriMag? blood pump, J. Extra Corpor. Technol. 50 (2) (2018) 94-98. [44] J. Rambaud, J. Guilbert, I. Guellec, S. Renolleau, A pilot study comparing two polymethylpentene extracorporeal membrane oxygenators, Perfusion 28 (1) (2013) 14-20. [45] A. Loforte, A. Montalto, F. Ranocchi, P.L. Della Monica, G. Casali, A. Lappa, A. Menichetti, C. Contento, F. Musumeci, Peripheral extracorporeal membrane oxygenation system as salvage treatment of patients with refractory cardiogenic shock: preliminary outcome evaluation, Artif. Organs 36 (3) (2012) E53-E61. [46] A. Philipp, F. De Somer, M. Foltan, A. Bredthauer, L. Krenkel, F. Zeman, K. Lehle, Life span of different extracorporeal membrane systems for severe respiratory failure in the clinical practice, PLoS One 13 (6) (2018) e0198392. [47] C.M. Alwardt, P.A. DeValeria, A.Y. Sen, C.A. Thunberg, P. Bhalla, S. Blakeman, J. D’Cunha, S. Ravanbakhsh, First use of a novel extracorporeal life support system: successful application in tracheoesophageal fistula repair, J. Extra Corpor. Technol. 54 (1) (2022) 73-78. [48] A. Salahi, T. Mohammadi, R.M. Behbahani, M. Hemmati, Preparation and performance evaluation of polyethersulfone hollow fiber membranes for ultrafiltration processes, Polym. Plast. Technol. Eng. 54 (14) (2015) 1468-1482. [49] H. Karkhanechi, M. Vaselbehagh, S. Jeon, A.R. Shaikh, D.M. Wang, H. Matsuyama, Preparation and characterization of polyvinylidenedifluoride-co-chlorotrifluoroethylene hollow fiber membranes with high alkaline resistance, Polymer 145 (2018) 310-323. [50] B.S. Lalia, V. Kochkodan, R. Hashaikeh, N. Hilal, A review on membrane fabrication: Structure, properties and performance relationship, Desalination 326 (2013) 77-95. [51] N.N. Li, C.F. Xiao, S.L. An, X.Y. Hu, Preparation and properties of PVDF/PVA hollow fiber membranes, Desalination 250 (2) (2010) 530-537. [52] H. Liu, S. Wang, J. Mao, C. Xiao, Q. Huang, Preparation and performance of braidreinforced poly (vinyl chloride) hollow fiber membranes. J. Appl. Polym. Sci. 134 (28) (2017) 45068. [53] W. Li, L. Wang, X.R. Meng, X.D. Wang, W. Yuan, D.X. Huang, Effect of high-concentration first coagulation bath retention time on the structures and properties of pvdf membrane, Technol. Water Treat. 37 (9) (2011) 51-54. [54] D.W. Ji, C.F. Xiao, J. Zhao, K.K. Chen, F. Zhou, Y.F. Gao, T. Zhang, H.Y. Ling, Green preparation of polyvinylidene fluoride loose nanofiltration hollow fiber membranes with multilayer structure for treating textile wastewater, Sci. Total Environ. 754 (2021) 141848. [55] A. Saffar, A. Ajji, P.J. Carreau, M.R. Kamal, The impact of new crystalline lamellae formation during annealing on the properties of polypropylene based films and membranes, Polymer 55 (14) (2014) 3156-3167. [56] M. Pelzer, T. Vad, A. Becker, T. Gries, S. Markova, V. Teplyakov, Melt spinning and characterization of hollow fibers from poly(4-methyl-1-pentene), J. Appl. Polym. Sci. 138 (1) (2021) e49630. [57] G. Conoscenti, V.L. Carrubba, V. Brucato, A versatile technique to produce porous polymeric scaffolds: the thermally induced phase separation (TIPS) method, Arch. Chem. Res. 1 (2) (2017) 1-3. [58] W.L. Harrison, F. Wang, J.B. Mecham, V.A. Bhanu, M. Hill, Y.S. Kim, J.E. McGrath, Influence of the bisphenol structure on the direct synthesis of sulfonated poly(arylene ether) copolymers. I, J. Polym. Sci. A Polym. Chem. 41 (14) (2003) 2264-2276. [59] M.T. Bishop, F.E. Karasz, P.S. Russo, K.H. Langley, Solubility and properties of a poly(aryl ether ketone) in strong acids, Macromolecules 18 (1) (1985) 86-93. [60] A.G. Fane, C.Y. Tang, R. Wang, Membrane technology for water: microfiltration, ultrafiltration, nanofiltration, and reverse osmosis. Treatise on Water Science. Elsevier, (2011), pp 01-335. [61] D.R. Lloyd, S.S. Kim, K.E. Kinzer, Microporous membrane formation via thermally-induced phase separation. II. Liquid-liquid phase separation, J. Membr. Sci. 64 (1-2) (1991) 1-11. [62] Zhang, Q.; Zhang, Y. Q.; Xia, D. W.; Zhao, Y.; Shi, Y. Q.; Jiao, Q. Z. Preparation of a porous structure in a poly(4-methyl-1-pentene)/diphenyl ether system with a thermally induced phase-separation method. J. Appl. Polym. Sci. 112 (2009) 1271-1277. [63] H.J. Tao, J. Zhang, X.L. Wang, Effect of diluents on the crystallization behavior of poly(4-methyl-1-pentene) and membrane morphology via thermally induced phase separation, J. Appl. Polym. Sci. 108 (2) (2008) 1348-1355. [64] H.J. Tao, Q. Xia, S. Jun, J. Zhang, X. Wang, Solid-liquid phase separation of poly-4-methyl-1-pentene/diluent system via thermally induced phase separation, Desalin. Water Treat. 17 (1-3) (2010) 294-303. [65] X. Huang, W.P. Wang, Z. Zheng, X.L. Wang, J.L. Shi, W.L. Fan, L. Li, Z.B. Zhang, Dissipative particle dynamics study and experimental verification on the pore morphologies and diffusivity of the poly (4-methyl-1-pentene)-diluent system via thermally induced phase separation: The effect of diluent and polymer concentration, J. Membr. Sci. 514 (2016) 487-500. [66] M. Liu, S.H. Liu, Z.L. Xu, Y.M. Wei, H. Yang, Formation of microporous polymeric membranes via thermally induced phase separation: a review, Front. Chem. Sci. Eng. 10 (1) (2016) 57-75. [67] J.M. Stubbs, Y.G. Durant, D.C. Sundberg, Polymer phase separation in composite latex particles. 1. Considerations for the nucleation and growth mechanism, Comptes Rendus Chim. 6 (11-12) (2003) 1217-1232. [68] D.R. Lloyd, S.S. Kim, K.E. Kinzer, Microporous membrane formation via thermally-induced phase separation. II. Liquid-liquid phase separation, J. Membr. Sci. 64 (1-2) (1991) 1-11. [69] D. Li, Y. Xia, Electrospinning of nanofibers: reinventing the wheel? Adv. Mater. 16 (14) (2004) 1151-1170. [70] C.X. Lyu, P. Zhao, J. Xie, S.Y. Dong, J.W. Liu, C.C. Rao, J.Z. Fu, Electrospinning of nanofibrous membrane and its applications in air filtration: a review, Nanomaterials (Basel) 11 (6) (2021) 1501. [71] K.H. Lee, S. Givens, D.B. Chase, J.F. Rabolt, Electrostatic polymer processing of isotactic poly(4-methyl-1-pentene) fibrous membrane, Polymer 47 (23) (2006) 8013-8018. [72] I. Ahrens, G.Y.H. Lip, K. Peter, New oral anticoagulant drugs in cardiovascular disease, Thromb. Haemost. 104 (1) (2010) 49-60. [73] Y. Ikada, Membranes as biomaterials, Polym. J. 23 (5) (1991) 551-560. [74] L. Teligui, E. Dalmayrac, G. Mabilleau, L. Macchi, A. Godon, J.J. Corbeau, A.S. Denomme, E. Bouquet, C. Boer, C. Baufreton, An ex vivo evaluation of blood coagulation and thromboresistance of two extracorporeal circuit coatings with reduced and full heparin dose, Interact. Cardiovasc. Thorac. Surg. 18 (6) (2014) 763-769. [75] M.A. Bag, L.M. Valenzuela, Impact of the hydration states of polymers on their hemocompatibility for medical applications: a review, Int. J. Mol. Sci. 18 (8) (2017) 1422. [76] K.M. Kovach, J.R. Capadona, A.S. Gupta, J.A. Potkay, The effects of PEG-based surface modification of PDMS microchannels on long-term hemocompatibility, J. Biomed. Mater. Res. A 102 (12) (2014) 4195-4205. [77] B.H. Cheng, K. Ishihara, H. Ejima, Bio-inspired immobilization of low-fouling phospholipid polymers via a simple dipping process: a comparative study of phenol, catechol and gallol as tethering groups, Polym. Chem. 11 (2) (2020) 249-253. [78] I.H. Jaffer, J.I. Weitz, The blood compatibility challenge. Part 1: Blood-contacting medical devices: The scope of the problem, Acta Biomater. 94 (2019) 2-10. [79] G. Parada, Y. Yu, W. Riley, S. Lojovich, D. Tshikudi, Q. Ling, Y.F. Zhang, J.X. Wang, L. Ling, Y.Y. Yang, S. Nadkarni, C. Nabzdyk, X.H. Zhao, Ultrathin and robust hydrogel coatings on cardiovascular medical devices to mitigate thromboembolic and infectious complications, Adv. Healthc. Mater. 9 (20) (2020) e2001116. [80] S. Hiranphinyophat, Y. Iwasaki, Controlled biointerfaces with biomimetic phosphorus-containing polymers, Sci. Technol. Adv. Mater. 22 (1) (2021) 301-316. [81] K. Ishihara, Blood-compatible surfaces with phosphorylcholine-based polymers for cardiovascular medical devices, Langmuir 35 (5) (2019) 1778-1787. [82] A.L. Lewis, Z.L. Cumming, H.H. Goreish, L.C. Kirkwood, L.A. Tolhurst, P.W. Stratford, Crosslinkable coatings from phosphorylcholine-based polymers, Biomaterials 22 (2) (2001) 99-111. [83] Y.K. Gong, F. Mwale, M.R. Wertheimer, F.M. Winnik, Promotion of U937 cell adhesion on polypropylene surfaces bearing phosphorylcholine functionalities, J. Biomater. Sci. Polym. Ed. 15 (11) (2004) 1423-1434. [84] Y.K. Gong, F.M. Winnik, Surface Amino Amplification and Graft with Phosphorylcholine by Reductive Amination, Acta Chim. Sin. 63 (2005) 643-647. [85] Y. Tang, T.J. Su, J. Armstrong, J.R. Lu, A.L. Lewis, T.A. Vick, P.W. Stratford, R.K. Heenan, J. Penfold, Interfacial structure of phosphorylcholine incorporated biocompatible polymer films, Macromolecules 36 (22) (2003) 8440-8448. [86] J.P. Xu, J. Ji, W.D. Chen, D.Z. Fan, Y.F. Sun, J.C. Shen, Phospholipid based polymer as drug release coating for cardiovascular device, Eur. Polym. J. 40 (2) (2004) 291-298. [87] H.K. Kim, K. Kim, Y. Byun, Preparation of a chemically anchored phospholipid monolayer on an acrylated polymer substrate, Biomaterials 26 (17) (2005) 3435-3444. [88] K. Kim, C. Kim, Y. Byun, Preparation of a stable phospholipid monolayer grafted onto a methacryloyl-terminated substrate as blood compatible materials, J. Biomater. Sci. Polym. Ed. 14 (9) (2003) 887-902. [89] Y. Iwasaki, S. Sawada, N. Nakabayashi, G. Khang, H.B. Lee, K. Ishihara, The effect of the chemical structure of the phospholipid polymer on fibronectin adsorption and fibroblast adhesion on the gradient phospholipid surface, Biomaterials 20 (22) (1999) 2185-2191. [90] K. Kaladhar, C.P. Sharma, Cell mimetic lateral stabilization of outer cell mimetic bilayer on polymer surfaces by peptide bonding and their blood compatibility, J. Biomed. Mater. Res. A 79 (1) (2006) 23-35. [91] Y.C. Chung, Y.H. Chiu, Y.W. Wu, Y.T. Tao, Self-assembled biomimetic monolayers using phospholipid-containing disulfides, Biomaterials 26 (15) (2005) 2313-2324. [92] S.F. Chen, J. Zheng, L.Y. Li, S.Y. Jiang, Strong resistance of phosphorylcholine self-assembled monolayers to protein adsorption: insights into nonfouling properties of zwitterionic materials, J. Am. Chem. Soc. 127 (41) (2005) 14473-14478. [93] I. You, S.M. Kang, Y. Byun, H. Lee, Enhancement of blood compatibility of poly(urethane) substrates by mussel-inspired adhesive heparin coating, Bioconjug. Chem. 22 (7) (2011) 1264-1269. [94] M. Coppens, J.W. Eikelboom, D. Gustafsson, J.I. Weitz, J. Hirsh, Translational success stories: development of direct thrombin inhibitors, Circ. Res. 111 (7) (2012) 920-929. [95] M. Bijak, J. Saluk, R. Szelenberger, P. Nowak, Popular naturally occurring antioxidants as potential anticoagulant drugs, Chem. Biol. Interact. 257 (2016) 35-45. [96] Z.H. An, Y.Y. Li, R. Xu, F.Y. Dai, Y.P. Zhao, L. Chen, New insights in poly(vinylidene fluoride) (PVDF) membrane hemocompatibility: Synergistic effect of PVDF-g-(acryloyl morpholine) and PVDF-g-(poly(acrylic acid)-argatroban) copolymers, Appl. Surf. Sci. 457 (2018) 170-178. [97] D. Arazawa. Accelerated CO2 removal for artificial lung applications, PhD Thesis, University of Pittsburgh (2018). [98] F. Otsuka, A.V. Finn, S.K. Yazdani, M. Nakano, F.D. Kolodgie, R. Virmani, The importance of the endothelium in atherothrombosis and coronary stenting, Nat. Rev. Cardiol. 9 (2012) 439-453. [99] H. Chen, X.B. Wang, Q. Zhou, P. Xu, Y. Liu, M.M. Wan, M. Zhou, C. Mao, Preparation of vascular endothelial cadherin loaded-amphoteric copolymer decorated coronary stents for anticoagulation and endothelialization, Langmuir 33 (46) (2017) 13430-13437. [100] W.W. Zheng, M. Liu, H.S. Qi, C.Y. Wen, C. Zhang, J.L. Mi, X. Zhou, L. Zhang, D.D. Fan, Mussel-inspired triblock functional protein coating with endothelial cell selectivity for endothelialization, J. Colloid Interface Sci. 576 (2020) 68-78. [101] S. Movafaghi, W. Wang, D.L. Bark Jr, L.P. Dasi, K.C. Popat, A.K. Kota, Hemocompatibility of super-repellent surfaces: current and future, Mater. Horiz. 6 (8) (2019) 1596-1610. [102] X.Y. Li, P. Gao, J.Y. Tan, K.Q. Xiong, M.F. Maitz, C.J. Pan, H.K. Wu, Y. Chen, Z.L. Yang, N. Huang, Assembly of metal-phenolic/catecholamine networks for synergistically anti-inflammatory, antimicrobial, and anticoagulant coatings, ACS Appl. Mater. Interfaces 10 (47) (2018) 40844-40853. [103] Q.K. Lin, J.J. Yan, F.Y. Qiu, X.X. Song, G.S. Fu, J. Ji, Heparin/collagen multilayer as a thromboresistant and endothelial favorable coating for intravascular stent, J. Biomed. Mater. Res. A 96 (1) (2011) 132-141. [104] Y.W. Wang, Y. Liu, Q. Han, H.B. Lin, F. Liu, A novel poly (4-methyl-1-pentene)/polypropylene (PMP/PP) thin film composite (TFC) artificial lung membrane for enhanced gas transport and excellent hemo-compatibility, J. Membr. Sci. 649 (2022) 120359. [105] E.E. Spaeth, Blood oxygenation in extracorporeal devices: theoretical considerations, CRC Crit. Rev. Bioeng. 1 (4) (1973) 383-417. [106] M. Eick, Basic human physiology: normal function and mechanisms of disease, Phys. Ther. 52 (3) (1972) 348-349. [107] Y.J. Zheng, K.M. Merz Jr, Mechanism of the human carbonic anhydrase II-catalyzed hydration of carbon dioxide, J. Am. Chem. Soc. 114 (26) (1992) 10498-10507. [108] H.A. Krebs, F.J. Roughton, Carbonic anhydrase as a tool in studying the mechanism of reactions involving H(2)CO(3), CO2 or HCO(3)', Biochem. J. 43 (4) (1948) 550-555. [109] R.G. Svitek, W.J. Federspiel, A mathematical model to predict CO2 removal in hollow fiber membrane oxygenators, Ann. Biomed. Eng. 36 (6) (2008) 992-1003. [110] F. Turri, J.I. Yanagihara, Computer-assisted numerical analysis for oxygen and carbon dioxide mass transfer in blood oxygenators, Artif. Organs 35 (6) (2011) 579-592. [111] S.R. Wickramasinghe, J.D. Garcia, B.B. Han, Mass and momentum transfer in hollow fibre blood oxygenators, J. Membr. Sci. 208 (1-2) (2002) 247-256. [112] S.R. Wickramasinghe, A.R. Goerke, J.D. Garcia, B.B. Han, Designing blood oxygenators, Ann. N Y Acad. Sci. 984 (1) (2003) 502-514. [113] S.R. Wickramasinghe, B. Han, Designing microporous hollow fibre blood oxygenators, Chem. Eng. Res. Des. 83 (3) (2005) 256-267. [114] K.W. Low, R. Van Loon, S.A. Rolland, J. Sienz, Formulation of generalized mass transfer correlations for blood oxygenator design, J. Biomech. Eng. 139 (3) (2017). DOI: 10.1115/1.4035535. [115] L. Di Paola, A.R. Terrinoni, F. Vitale, Extracorporeal membrane blood oxygenators: effect of membrane wetting on gas transfer and device performance, Asia Pac. J. Chem. Eng. 7 (S3) (2012): S348-S355. [116] J.T. Zhang, T.D.C. Nolan, T. Zhang, B.P. Griffith, Z.J. Wu, Characterization of membrane blood oxygenation devices using computational fluid dynamics, J. Membr. Sci. 288 (1-2) (2007) 268-279. [117] V. Evren, A numerical approach to the determination of mass transfer performances through partially wetted microporous membranes: transfer of oxygen to water, J. Membr. Sci. 175 (1) (2000) 97-110. [118] J.P. Whiteley, D.J. Gavaghan, C.E. Hahn, Some factors affecting oxygen uptake by red blood cells in the pulmonary capillaries, Math. Biosci. 169 (2) (2001) 153-172. [119] A.M. Guzman, R.A. Escobar, C.H. Amon, Methodology for predicting oxygen transport on an intravenous membrane oxygenator combining computational and analytical models, J. Biomech. Eng. 127 (7) (2005) 1127-1140. [120] G. Catapano, H.D. Papenfuss, A. Wodetzki, U. Baurmeister, Mass and momentum transport in extra-luminal flow (ELF) membrane devices for blood oxygenation, J. Membr. Sci. 184 (1) (2001) 123-135. [121] K. Groebe, G. Thews, Basic mechanisms of diffusive and diffusion-related oxygen transport in biological systems: a review, Adv. Exp. Med. Biol. 317 (1992) 21-33. [122] A.O. Frank, C.J. Chuong, R.L. Johnson, A finite-element model of oxygen diffusion in the pulmonary capillaries, J. Appl. Physiol. (1985) 82 (6) (1997) 2036-2044. [123] M. Hormes, R. Borchardt, I. Mager, T.S. Rode, M. Behr, U. Steinseifer, A validated CFD model to predict O2 and CO2 transfer within hollow fiber membrane oxygenators, Int. J. Artif. Organs 34 (3) (2011) 317-325. [124] F.C. Lin, D.M. Wang, J.Y. Lai, Asymmetric TPX membranes with high gas flux, J. Membr. Sci. 110 (1) (1996) 25-36. [125] J.Y. Lai, S.L. Wei, Preparation of vinylpyridine irradiation-grafted poly(4-methyl-pentene-1) membrane for oxygen enrichment, J. Appl. Polym. Sci. 32 (7) (1986) 5763-5775. [126] J.Y. Lai, G.J. Wu, S.S. Shyu, TPX/siloxane blend membrane for oxygen enrichment, J. Appl. Polym. Sci. 34 (2) (1987) 559-569. [127] T. He, S.H. Yu, J.H. He, D.J. Chen, J. Li, H.J. Hu, X.R. Zhong, Y.W. Wang, Z.H. Wang, Z.L. Cui, Membranes for extracorporeal membrane oxygenator (ECMO): History, preparation, modification and mass transfer, Chin. J. Chem. Eng. 49 (2022) 46-75. [128] W.M. Zapol, Extracorporeal membrane oxygenation in severe acute respiratory failure, Jama 242 (20) (1979) 2193. [129] R.H. Bartlett, A.B. Gazzaniga, J. Toomasian, A.G. Coran, D. Roloff, R. Rucker, Extracorporeal membrane oxygenation (ECMO) in neonatal respiratory failure. 100 cases, Ann. Surg. 204 (3) (1986) 236-245. [130] M.S. Alshahrani, A. Sindi, F. Alshamsi, A. Al-Omari, M. El Tahan, B. Alahmadi, A. Zein, N. Khatani, F. Al-Hameed, S. Alamri, M. Abdelzaher, A. Alghamdi, F. Alfousan, A. Tash, W. Tashkandi, R. Alraddadi, K. Lewis, M. Badawee, Y.M. Arabi, E. Fan, W. Alhazzani, Extracorporeal membrane oxygenation for severe middle east respiratory syndrome coronavirus. Ann. Intensive Care 8 (2018) 3. [131] M.A. Noah, G.J. Peek, S.J. Finney, M.J. Griffiths, D.A. Harrison, R. Grieve, M.Z. Sadique, J.S. Sekhon, D.F. McAuley, R.K. Firmin, C. Harvey, J.J. Cordingley, S. Price, A. Vuylsteke, D.P. Jenkins, D.W. Noble, R. Bloomfield, T.S. Walsh, G.D. Perkins, D. Menon, B.L. Taylor, K.M. Rowan, Referral to an extracorporeal membrane oxygenation center and mortality among patients with severe 2009 influenza a(H1N1), JAMA 306 (15) (2011) 1659-1668. [132] G.J. Peek, M. Mugford, R. Tiruvoipati, A. Wilson, E. Allen, M.M. Thalanany, C.L. Hibbert, A. Truesdale, F. Clemens, N. Cooper, R.K. Firmin, D. Elbourne, C.E.S.A.R. trial collaboration, Efficacy and economic assessment of conventional ventilatory support versus extracorporeal membrane oxygenation for severe adult respiratory failure (CESAR): a multicentre randomised controlled trial, Lancet 374 (9698) (2009) 1351-1363. [133] A. Undar, S.G. Wang, A. Ozyuksel, J. Rossano, Chapter 9-pediatric devices, Academic Press, (2018). [134] W.I. Wu, N. Rochow, E. Chan, G. Fusch, A. Manan, D. Nagpal, P.R. Selvaganapathy, C. Fusch, Lung assist device: development of microfluidic oxygenators for preterm infants with respiratory failure, Lab Chip 13 (13) (2013) 2641-2650. [135] M. Dabaghi, N. Rochow, N. Saraei, R.K. Mahendran, G. Fusch, A.K.C. Chan, J.L. Brash, C. Fusch, P.R. Selvaganapathy, Miniaturization of artificial lungs toward portability, Adv. Mater. Technol. 5 (7) (2020) 2000136. [136] J.A. Potkay, The promise of microfluidic artificial lungs, Lab Chip 14 (21) (2014) 4122-4138. [137] J.A. Potkay, A high efficiency micromachined artificial lung. TRANSDUCERS 2009-15th Int. Conf. Solid-State Sensors Actuators Microsyst (2009) 2234-2237. |
| No related articles found! |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||
京公网安备 11010102001993号 
