[1] F. Hong, X.T. Lin, Y.X. Wu, Y.R. Dong, Y.T. Cao, F.T. Hu, N. Gan, Enzyme-free fluorometric assay for chloramphenicol based on double stirring bar-assisted dual signal amplification, Mikrochim. Acta 186 (3) (2019) 150. [2] B. Berendsen, L. Stolker, J.D. Jong, M. Nielen, E. Tserendorj, R. Sodnomdarjaa, A. Cannavan, C. Elliott, Evidence of natural occurrence of the banned antibiotic chloramphenicol in herbs and grass, Anal. Bioanal. Chem. 397 (5) (2010) 1955-1963. [PubMed]. [3] S. Krongdang, J.D. Evans, Y. Chen, W. Mookhploy, P. Chantawannakul, Comparative susceptibility and immune responses of Asian and European honey bees to the American foulbrood pathogen, Paenibacillus larvae, Insect. Sci. 26(5) (2019) 831-842. [4] M. Shokri, A. Jodat, N. Modirshahla, M.A. Behnajady, Photocatalytic degradation of chloramphenicol in an aqueous suspension of silver-doped TiO2 nanoparticles, Environ. Technol. 34 (9-12) (2013) 1161-1166. [5] G.M. Yang, F.Q. Zhao, Electrochemical sensor for chloramphenicol based on novel multiwalled carbon nanotubes@molecularly imprinted polymer, Biosens. Bioelectron. 64 (2015) 416-422. [6] EFSA Panel on Contaminants in the Food Chain (CONTAM), Scientific opinion on chloramphenicol in food and feed, EFSA J. 12 (11) (2014) 3907. [7] L. Luo, S.Y. Lu, C.P. Huang, F. Wang, Y. Ren, H. Cao, Q.H. Lin, Z.Q. Tan, X.D. Wen, A survey of chloramphenicol residues in aquatic products of Shenzhen, South China, Food Addit. Contam. Part A Chem. Anal. Control Expo. Risk Assess. 38 (6) (2021) 914-921. [8] Q.Z. Sun, L. Liu, Y.C. Gong, P.Y. Liu, Adsorption behavior and interaction mechanism of microplastics with typical hydrophilic pharmaceuticals and personal care products, Environ. Res. 244 (2024) 117897. [9] M. Ibanez, E. Gracia-Lor, L. Bijlsma, E. Morales, L. Pastor, F. Hernandez, Removal of emerging contaminants in sewage water subjected to advanced oxidation with ozone, J. Hazard. Mater. 260 (2013) 389-398. [10] M.I. Badawy, R.A. Wahaab, A.S. El-Kalliny, Fenton-biological treatment processes for the removal of some pharmaceuticals from industrial wastewater, J. Hazard. Mater. 167 (1-3) (2009) 567-574. [11] M.H. Nie, Y. Yang, Z.J. Zhang, C.X. Yan, X.N. Wang, H.J. Li, W.B. Dong, Degradation of chloramphenicol by thermally activated persulfate in aqueous solution, Chem. Eng. J. 246 (2014) 373-382. [12] M. Petala, V. Tsiridis, P. Samaras, A. Zouboulis, G.P. Sakellaropoulos, Wastewater reclamation by advanced treatment of secondary effluents, Desalination 195 (1-3) (2006) 109-118. [13] B.A. Wols, C.H.M. Hofman-Caris, Review of photochemical reaction constants of organic micropollutants required for UV advanced oxidation processes in water, Water Res. 46 (9) (2012) 2815-2827. [14] Y. Lee, U. von Gunten, Oxidative transformation of micropollutants during municipal wastewater treatment: comparison of kinetic aspects of selective (chlorine, chlorine dioxide, ferrate VI, and ozone) and non-selective oxidants (hydroxyl radical), Water Res. 44 (2) (2010) 555-566. [15] C.J. Liang, Z.S. Wang, C.J. Bruell, Influence of pH on persulfate oxidation of TCE at ambient temperatures, Chemosphere 66 (1) (2007) 106-113. [16] M. Schmittel, Book review: organic ion radicals chemistry and applications. by zory V. todres, Angew. Chem. Int. Ed. 42 (22) (2003) 2445-2446. [17] S.S. Abu Amr, H.A. Aziz, M.N. Adlan, M.J.K. Bashir, Pretreatment of stabilized leachate using ozone/persulfate oxidation process, Chem. Eng. J. 221 (2013) 492-499. [18] M. Khashij, M. Mehralian, Z. Goodarzvand Chegini, Degradation of acetaminophen (ACT) by ozone/persulfate oxidation process: experimental and degradation pathways, Pigment. Resin Technol. 49 (5) (2020) 363-368. [19] Z. Zhang, F.Y. Chen, R.P. Liu, C.Z. Sun, H.Y. Fan, Crystal violet degradation in the ozone/persulfate/ferroferric oxide system: a heterogeneous catalytic process for simultaneous catalysis of ozone and persulfate, J. Clean. Prod. 434 (2024) 139937. [20] S.S. Abu Amr, H.A. Aziz, M.N. Adlan, Optimization of stabilized leachate treatment using ozone/persulfate in the advanced oxidation process, Waste Manag. 33 (6) (2013) 1434-1441. [21] H. Maleki, V. Bertola, Recent advances and prospects of inkjet printing in heterogeneous catalysis, Catal. Sci. Technol. 10 (10) (2020) 3140-3159. [22] X.Y. Chen, W. Miao, Y.L. Yang, S.B. Hao, S. Mao, Aeration-assisted sulfite activation with ferrous for enhanced chloramphenicol degradation, Chemosphere 238 (2020) 124599. [23] X.H. Liu, Z.G. Yang, W.X. Zhu, Y. Yang, H.P. Li, Catalytic ozonation of chloramphenicol with manganese-copper oxides/maghemite in solution: Empirical kinetics model, degradation pathway, catalytic mechanism, and antibacterial activity, J. Environ. Manag. 302 (2022) 114043. [24] W.X. Wang, L. Wang, Y.C. Lv, C.C. Deng, Z.H. Hu, Simple synthesis of CoNi@ZrO2 nanospheres for catalytic degradation of chloramphenicol under visible light, Water Air Soil Pollut. 235 (8) (2024) 539. [25] Z.Y. Yang, H.Z. Xu, Y.B. Li, A.B. Banaga, G.W. Chu, J.F. Chen, Local gas holdup, bubble size distribution, and bubble velocity in a submerged rotating packed bed reactor, Ind. Eng. Chem. Res. 63 (32) (2024) 14391-14402. [26] E.M.M. Niang, A.M. Assoumy, A. Teko Agbo, K. Akoda, A. Talnan, S.O. Sarr, Chloramphenicol residue levels of marketed farm gate milk in Senegal, Food Contr. 72 (2017) 249-254. [27] H. Li, L. Yang, L.Y. He, Y.F. Ma, X.K. Yan, L. Wu, Z.L. Zhang, Kinetics and mechanisms of chloramphenicol degradation in aqueous solutions using heat-assisted nZVI activation of persulfate, J. Mol. Liq. 313 (2020) 113511. [28] Z. Yuan, M.H. Sui, B.J. Yuan, P. Li, J.Y. Wang, J. Qin, G.Y. Xu, Degradation of ibuprofen using ozone combined with peroxymonosulfate, Environ. Sci.: Water Res. Technol. 3 (5) (2017) 960-969. [29] G. Badalians Gholikandi, N. Zakizadeh, H. Masihi, Application of peroxymonosulfate-ozone advanced oxidation process for simultaneous waste-activated sludge stabilization and dewatering purposes: a comparative study, J. Environ. Manag. 206 (2018) 523-531. [30] Y. Cao, W. Qiu, Y.M. Zhao, J. Li, J. Jiang, Y. Yang, S.Y. Pang, G.Q. Liu, The degradation of chloramphenicol by O3/PMS and the impact of O3- based AOPs pre-oxidation on dichloroacetamide generation in post-chlorination, Chem. Eng. J. 401 (2020) 126146. [31] T. Kracik, T. Moucha, Influence of viscosity on gas holdup formation in stirred tank reactors, Chem. Pap. 76 (1) (2022) 301-307. [32] A.M. Ocampo, Persulfate activation by organic compounds, J. Environ. Manag. 12 (2022) 50-61. [33] Y. Lei, S.S. Cheng, N. Luo, X. Yang, T.C. An, Rate constants and mechanisms of the reactions of Cl· and Cl2·- with trace organic contaminants, Environ. Sci. Technol. 53 (19) (2019) 11170-11182. [34] P.D. Hu, M.C. Long, Cobalt-catalyzed sulfate radical-based advanced oxidation: a review on heterogeneous catalysts and applications, Appl. Catal. B Environ. 181 (2016) 103-117. [35] H.Y. Dong, Z.M. Qiang, J. Hu, J.H. Qu, Degradation of chloramphenicol by UV/chlorine treatment: kinetics, mechanism and enhanced formation of halonitromethanes, Water Res. 121 (2017) 178-185. [36] G. Mahendran, G. Arthanareeswaran, In vitro photo-catalytic degradation of chloramphenicol using pharmaceutical wastewater, Int. J. Membr. Sci. and Technol. 10(1) (2023) 17-30. |