Chinese Journal of Chemical Engineering ›› 2025, Vol. 82 ›› Issue (6): 222-234.DOI: 10.1016/j.cjche.2025.01.012
Previous Articles Next Articles
Zimin Luo1, Xinyi Huang1, Chunfei Zhou1,2, Min Jiang1, Xiaoping Liu1, Huajun Huang1
Received:2024-11-01
Revised:2024-12-25
Accepted:2025-01-20
Online:2025-03-08
Published:2025-08-19
Contact:
Huajun Huang,E-mail:huanghuajun2004@126.com
Supported by:Zimin Luo1, Xinyi Huang1, Chunfei Zhou1,2, Min Jiang1, Xiaoping Liu1, Huajun Huang1
通讯作者:
Huajun Huang,E-mail:huanghuajun2004@126.com
基金资助:Zimin Luo, Xinyi Huang, Chunfei Zhou, Min Jiang, Xiaoping Liu, Huajun Huang. Migration/transformation characteristics of heavy metals and polycyclic aromatic hydrocarbons in the co-liquefaction treatment of pig manure and lignocellulosic biomass[J]. Chinese Journal of Chemical Engineering, 2025, 82(6): 222-234.
Zimin Luo, Xinyi Huang, Chunfei Zhou, Min Jiang, Xiaoping Liu, Huajun Huang. Migration/transformation characteristics of heavy metals and polycyclic aromatic hydrocarbons in the co-liquefaction treatment of pig manure and lignocellulosic biomass[J]. 中国化学工程学报, 2025, 82(6): 222-234.
Add to citation manager EndNote|Ris|BibTeX
URL: https://cjche.cip.com.cn/EN/10.1016/j.cjche.2025.01.012
| [1] H. Wu, A.J. Li, H.W. Zhang, S.C. Gao, S.Q. Li, J.D. Cai, R.X. Yan, Z.L. Xing, The potential and sustainable strategy for swine wastewater treatment: Resource recovery, Chemosphere 336 (2023) 139235. [2] F.X. Zhu, C.L. Hong, W.P. Wang, H.H. Lyu, W.J. Zhu, H. Xv, Y.L. Yao, A microbial agent effectively reduces ammonia volatilization and ensures good maggot yield from pig manure composted via housefly larvae cultivation, J. Clean. Prod. 270 (2020) 122373. [3] X.C. Zheng, D.S. Zou, Q.D. Wu, H. Wang, S.H. Li, F. Liu, Z.H. Xiao, Review on fate and bioavailability of heavy metals during anaerobic digestion and composting of animal manure, Waste Manag. 150 (2022) 75-89. [4] J. Menz, O. Olsson, K. Kummerer, Antibiotic residues in livestock manure: does the EU risk assessment sufficiently protect against microbial toxicity and selection of resistant bacteria in the environment? J. Hazard. Mater. 379 (2019) 120807. [5] G.C. Su, H.C. Ong, N.W. Mohd Zulkifli, S. Ibrahim, W.H. Chen, C.T. Chong, Y.S. Ok, Valorization of animal manure via pyrolysis for bioenergy: a review, J. Clean. Prod. 343 (2022) 130965. [6] C.H. Zhou, H.J. Huang, L. Li, Z.Q. Pan, X.F. Xiao, J.X. Wang, Advances in hydrothermal carbonization of livestock manure. Sustainable Green Chemical Processes and their Allied Applications. Springer International Publishing, (2020), pp 83-205. [7] I. Adanez-Rubio, I. Fonts, P. de Blas, F. Viteri, G. Gea, M.U. Alzueta, Exploratory study of polycyclic aromatic hydrocarbons occurrence and distribution in manure pyrolysis products, J. Anal. Appl. Pyrolysis 155 (2021) 105078. [8] S.H. Li, D.S. Zou, L.C. Li, L. Wu, F. Liu, X.Y. Zeng, H. Wang, Y.F. Zhu, Z.H. Xiao, Evolution of heavy metals during thermal treatment of manure: a critical review and outlooks, Chemosphere 247 (2020) 125962. [9] H. Lin, W.C. Sun, Q.G. Yu, J.W. Ma, Acidic conditions enhance the removal of sulfonamide antibiotics and antibiotic resistance determinants in swine manure, Environ. Pollut. 263 (Pt A) (2020) 114439. [10] R.P. Ipiales, A.F. Mohedano, E. Diaz-Portuondo, E. Diaz, M.A. de la Rubia, Co-hydrothermal carbonization of swine manure and lignocellulosic waste: a new strategy for the integral valorization of biomass wastes, Waste Manag. 169 (2023) 267-275. [11] J. Qiu, M. Fernandes de Souza, A.A. Robles-Aguilar, S. Ghysels, Y.S. Ok, F. Ronsse, E. Meers, Improving biochar properties by co-pyrolysis of pig manure with bio-invasive weed for use as the soil amendment, Chemosphere 312 (Pt 1) (2023) 137229. [12] V.A. Schommer, B.M. Wenzel, D.J. Daroit, Anaerobic co-digestion of swine manure and chicken feathers: Effects of manure maturation and microbial pretreatment of feathers on methane production, Renew. Energy 152 (2020) 1284-1291. [13] X.F. Wang, J.X. Wan, G.F. Jiang, T.J. Yang, S. Banerjee, Z. Wei, X.L. Mei, V.P. Friman, Y.C. Xu, Q.R. Shen, Compositional and functional succession of bacterial and fungal communities is associated with changes in abiotic properties during pig manure composting, Waste Manag. 131 (2021) 350-358. [14] H.J. Huang, X.Z. Yuan, Recent progress in the direct liquefaction of typical biomass, Prog. Energy Combust. Sci. 49 (2015) 59-80. [15] H.J. Huang, X.Z. Yuan, G.Q. Wu, Liquefaction of biomass for bio-oil products. Waste Biomass Management - A Holistic Approach. Springer International Publishing, (2017), pp 31-250. [16] D.R. Vardon, B.K. Sharma, J. Scott, G. Yu, Z.C. Wang, L. Schideman, Y.H. Zhang, T.J. Strathmann, Chemical properties of biocrude oil from the hydrothermal liquefaction of Spirulina algae, swine manure, and digested anaerobic sludge, Bioresour. Technol. 102 (17) (2011) 8295-8303. [17] S.N. Xiu, A. Shahbazi, V. Shirley, M.R. Mims, C.W. Wallace, Effectiveness and mechanisms of crude glycerol on the biofuel production from swine manure through hydrothermal pyrolysis, J. Anal. Appl. Pyrolysis 87 (2) (2010) 194-198. [18] S.N. Xiu, A. Shahbazi, V.B. Shirley, L.J. Wang, Swine manure/crude glycerol co-liquefaction: physical properties and chemical analysis of bio-oil product, Bioresour. Technol. 102 (2) (2011) 1928-1932. [19] S.N. Xiu, A. Shahbazi, C.W. Wallace, L.J. Wang, D. Cheng, Enhanced bio-oil production from swine manure co-liquefaction with crude glycerol, Energy Convers. Manag. 52 (2) (2011) 1004-1009. [20] A. Ali Shah, S. Sohail Toor, T. Hussain Seehar, K.K. Sadetmahaleh, T. Helmer Pedersen, A. Haaning Nielsen, L. Aistrup Rosendahl, Bio-crude production through co-hydrothermal processing of swine manure with sewage sludge to enhance pumpability, Fuel 288 (2021) 119407. [21] W.T. Chen, Y.H. Zhang, J.X. Zhang, L. Schideman, G. Yu, P. Zhang, M. Minarick, Co-liquefaction of swine manure and mixed-culture algal biomass from a wastewater treatment system to produce bio-crude oil, Appl. Energy 128 (2014) 209-216. [22] K.P.R. Dandamudi, T. Murdock, P.J. Lammers, S.G. Deng, E.H. Fini, Production of functionalized carbon from synergistic hydrothermal liquefaction of microalgae and swine manure, Resour. Conserv. Recycl. 170 (2021) 105564. [23] Z.M. Luo, J.B. Xiong, M. Jiang, L. Li, G.F. Wang, H.J. Huang, Co-treatment of swine manure and lignocellulosic biomass by liquefaction: Parameter optimization, product characterization, reaction mechanism, J. Supercrit. Fluids 205 (2024) 106138. [24] D. Cheng, L.J. Wang, A. Shahbazi, S.N. Xiu, B. Zhang, Catalytic cracking of crude bio-oil from glycerol-assisted liquefaction of swine manure, Energy Convers. Manag. 87 (2014) 378-384. [25] D. Cheng, L.J. Wang, A. Shahbazi, S.N. Xiu, B. Zhang, Characterization of the physical and chemical properties of the distillate fractions of crude bio-oil produced by the glycerol-assisted liquefaction of swine manure, Fuel 130 (2014) 251-256. [26] F. Conti, S.S. Toor, T.H. Pedersen, T.H. Seehar, A.H. Nielsen, L.A. Rosendahl, Valorization of animal and human wastes through hydrothermal liquefaction for biocrude production and simultaneous recovery of nutrients, Energy Convers. Manag. 216 (2020) 112925. [27] H.G. Li, J.W. Lu, Y.H. Zhang, Z.D. Liu, Hydrothermal liquefaction of typical livestock manures in China: Biocrude oil production and migration of heavy metals, J. Anal. Appl. Pyrolysis 135 (2018) 133-140. [28] J.W. Lu, J. Watson, J.L. Zeng, H.G. Li, Z.B. Zhu, M. Wang, Y.H. Zhang, Z.D. Liu, Biocrude production and heavy metal migration during hydrothermal liquefaction of swine manure, Process. Saf. Environ. Prot. 115 (2018) 108-115. [29] Q.Q. Lang, B. Zhang, Y. Li, Z.G. Liu, W.T. Jiao, Formation and toxicity of polycyclic aromatic hydrocarbons during CaO assisted hydrothermal carbonization of swine manure, Waste Manag. 100 (2019) 84-90. [30] Z.Q. Pan, H.J. Huang, C.F. Zhou, F.Y. Lai, X.W. He, J.B. Xiong, X.F. Xiao, Distribution and transformation behaviors of heavy metals during liquefaction process of sewage sludge in ethanol-water mixed solvents, J. Cent. South Univ. 26 (10) (2019) 2771-2784. [31] T. Yang, H.J. Huang, F.Y. Lai, Pollution hazards of heavy metals in sewage sludge from four wastewater treatment plants in Nanchang, China, Trans. Nonferrous Met. Soc. China 27 (10) (2017) 2249-2259. [32] X.Z. Yuan, H.J. Huang, G.M. Zeng, H. Li, J.Y. Wang, C.F. Zhou, H.N. Zhu, X.K. Pei, Z.F. Liu, Z.T. Liu, Total concentrations and chemical speciation of heavy metals in liquefaction residues of sewage sludge, Bioresour. Technol. 102 (5) (2011) 4104-4110. [33] H.J. Huang, X.Z. Yuan, The migration and transformation behaviors of heavy metals during the hydrothermal treatment of sewage sludge, Bioresour. Technol. 200 (2016) 991-998. [34] J.X. Wang, S.W. Chen, F.Y. Lai, S.Y. Liu, J.B. Xiong, C.F. Zhou, Yi-Yu, H.J. Huang, Microwave-assisted hydrothermal carbonization of pig feces for the production of hydrochar, J. Supercrit. Fluids 162 (2020) 104858. [35] Y.C. Chang, X.F. Xiao, H.J. Huang, Y.D. Xiao, H.S. Fang, J.B. He, C.H. Zhou, Transformation characteristics of polycyclic aromatic hydrocarbons during hydrothermal liquefaction of sewage sludge, J. Supercrit. Fluids 170 (2021) 105158. [36] A. Ikem, N.O. Egiebor, K. Nyavor, Trace elements in water, fish and sediment from tuskegee lake, southeastern usa, Water Air Soil Pollut. 149 (1) (2003) 51-75. [37] S. Zhao, C.H. Feng, Y.R. Yang, J.F. Niu, Z.Y. Shen, Risk assessment of sedimentary metals in the Yangtze Estuary: new evidence of the relationships between two typical index methods, J. Hazard. Mater. 241-242 (2012) 164-172. [38] T.T. Liu, L.F. Tian, Z.G. Liu, J. He, H.H. Fu, Q.F. Huang, H.H. Xue, Z.C. Huang, Distribution and toxicity of polycyclic aromatic hydrocarbons during CaO-assisted hydrothermal carbonization of sewage sludge, Waste Manag. 120 (2021) 616-625. [39] C. Quan, G.T. Zhang, N.B. Gao, Comparison of PAHs behaviors in the pyrolysis products of oily sludge with different ash contents, J. Anal. Appl. Pyrolysis 175 (2023) 106184. [40] X.C. Zheng, D.S. Zou, Q.D. Wu, L.Q. Zhang, J.L. Tang, F. Liu, Z.H. Xiao, Speciation, leachability, and phytoaccessibility of heavy metals during thermochemical liquefaction of contaminated peanut straw, Waste Manag. 176 (2024) 20-29. [41] Z. Zhu, Z.Q. Sun, X.F. Yu, S. Zhang, X.X. Cao, X.L. Liu, Z.W. Guo, L. Rosendahl, G.Y. Chen, Valorization of low heavy metal-accumulating plants through catalytic hydrothermal liquefaction with attapulgite: Product characterization and migration behavior of heavy metals, Energy 295 (2024) 131076. [42] S.Z. Huang, Z.W. Huang, Z.B. Chen, J. Wang, F. Evrendilek, J.Y. Liu, Y. He, Y. Ninomiya, W.M. Xie, G.Z. Zhuang, S.Y. Sun, Simultaneous optimizations of heavy metal immobilizations, products, temperature, and atmosphere dependency by acid pretreatment-assisted pyrolysis and gasification of hyperaccumulator (Pteris vittate L.) biomass, J. Clean. Prod. 450 (2024) 142004. [43] W. Su, P. Liu, C. Cai, H. Ma, B. Jiang, Y. Xing, Y. Liang, L. Cai, C. Xia, Q.V. Le, C. Sonne, S.S. Lam, Hydrogen production and heavy metal immobilization using hyperaccumulators in supercritical water gasification, J. Hazard. Mater. 402 (2021) 123541. [44] S.Y. Xie, G.W. Yu, C.X. Li, F.T. You, J. Li, R.Q. Tian, G. Wang, Y. Wang, Dewaterability enhancement and heavy metals immobilization by pig manure biochar addition during hydrothermal treatment of sewage sludge, Environ. Sci. Pollut. Res. Int. 26 (16) (2019) 16537-16547. [45] G.F. Chen, X.F. Yang, S.Y. Chen, Y. Dong, L. Cui, Y. Zhang, P. Wang, X.Q. Zhao, C.Y. Ma, Transformation of heavy metals in lignite during supercritical water gasification, Appl. Energy 187 (2017) 272-280. [46] L. Zhao, Y.H. Dong, H. Wang, Residues of organochlorine pesticides and polycyclic aromatic hydrocarbons in farm-raised livestock feeds and manures in Jiangsu, China, Sci. Total Environ. 450 (2013) 348-355. [47] L. Rey-Salgueiro, M.S. Garcia-Falcon, E. Martinez-Carballo, C. Gonzalez-Barreiro, J. Simal-Gandara, The use of manures for detection and quantification of polycyclic aromatic hydrocarbons and 3-hydroxybenzo [a] pyrene in animal husbandry, Sci. Total Environ. 406 (1-2) (2008) 279-286. [48] K. Suominen, M. Verta, S. Marttinen, Hazardous organic compounds in biogas plant end products: soil burden and risk to food safety, Sci. Total Environ. 491-492 (2014) 192-199. [49] J.M. De la Rosa, A.M. Sanchez-Martin, P. Campos, A.Z. Miller, Effect of pyrolysis conditions on the total contents of polycyclic aromatic hydrocarbons in biochars produced from organic residues: Assessment of their hazard potential, Sci. Total Environ. 667 (2019) 578-585. [50] G. Purcaro, S. Moret, L.S. Conte, Overview on polycyclic aromatic hydrocarbons: occurrence, legislation and innovative determination in foods, Talanta 105 (2013) 292-305. [51] P. Devi, A.K. Dalai, Occurrence, distribution, and toxicity assessment of polycyclic aromatic hydrocarbons in biochar, biocrude, and biogas obtained from pyrolysis of agricultural residues, Bioresour. Technol. 384 (2023) 129293. [52] M. Gong, Y.L. Wang, Y.J. Fan, W. Zhu, H.W. Zhang, Y. Su, Polycyclic aromatic hydrocarbon formation during the gasification of sewage sludge in sub- and supercritical water: Effect of reaction parameters and reaction pathways, Waste Manag. 72 (2018) 287-295. [53] Y. Li, Y.B. Zhai, Y. Zhu, C. Peng, T.F. Wang, G.M. Zeng, D.B. Wu, X. Zhao, Distribution and conversion of polycyclic aromatic hydrocarbons during the hydrothermal treatment of sewage sludge, Energy Fuels 31 (9) (2017) 9542-9549. [54] M. Gong, W. Zhu, H.W. Zhang, Y. Su, Y.J. Fan, Polycyclic aromatic hydrocarbon formation from gasification of sewage sludge in supercritical water: The concentration distribution and effect of sludge properties, J. Supercrit. Fluids 113 (2016) 112-118. [55] Z.R. Xu, W. Zhu, M. Li, H.W. Zhang, M. Gong, Quantitative analysis of polycyclic aromatic hydrocarbons in solid residues from supercritical water gasification of wet sewage sludge, Appl. Energy 102 (2013) 476-483. [56] B.X. Xie, J.H. Qin, H. Sun, S. Wang, X. Li, Leaching behavior of polycyclic aromatic hydrocarbons (PAHs) from oil-based residues of shale gas drill cuttings, Environ. Pollut. 288 (2021) 117773. [57] A. Zielinska, P. Oleszczuk, Effect of pyrolysis temperatures on freely dissolved polycyclic aromatic hydrocarbon (PAH) concentrations in sewage sludge-derived biochars, Chemosphere 153 (2016) 68-74. [58] N.N. Peng, Y. Li, T.T. Liu, Q.Q. Lang, C. Gai, Z.G. Liu, Polycyclic aromatic hydrocarbons and toxic heavy metals in municipal solid waste and corresponding hydrochars, Energy Fuels 31 (2) (2017) 1665-1671. |
| [1] | Siwen Huang, Kui Wang, Haibo Wang, Li Lv, Tao Zhang, Wenxiang Tang, Zongpeng Zou, Shengwei Tang. Comprehensive utilization of titanium-bearing blast furnace slag by H2SO4 roasting and stepwise precipitation [J]. Chinese Journal of Chemical Engineering, 2025, 80(4): 24-37. |
| [2] | Zhenhui Lv, Jianan Li, Dong Xue, Tao Yang, Gang Wang, Chong Peng. Facile molybdenum and aluminum recovery from spent hydrogenation catalyst [J]. Chinese Journal of Chemical Engineering, 2024, 69(5): 72-78. |
| [3] | Xinyue Duan, Zeyu Zhang, Ziyuan Zhao, Yang Liu, Liang Gong, Xuewen Cao, Jiang Bian. Supersonic expansion and condensation characteristics of hydrogen gas under different temperature conditions [J]. Chinese Journal of Chemical Engineering, 2024, 69(5): 220-226. |
| [4] | Xing Zhong, Yubin Tan, Siyuan Wu, Caixia Hu, Kai Guo, Yongchuan Wu, Neng Yu, Mingyang Ma, Ying Dai. Efficient and rapid capture of uranium(VI) in wastewater via multi-amine modified β-cyclodextrin porous polymer [J]. Chinese Journal of Chemical Engineering, 2024, 68(4): 144-155. |
| [5] | A. Safiulina, S. Khusnutdinov, I. Khusnutdinov, I. Goncharova. Continuous monitoring of residual water content in boiling water-hydrocarbon emulsions during thermomechanical dehydration [J]. Chinese Journal of Chemical Engineering, 2024, 76(12): 118-123. |
| [6] | Vaishnavi Mahadevan, Sathishkumar Kannaiyan, Gopinath Kannappan Panchamoorthy. Beneficial synergetic effect of feedstock characteristics and reaction conditions on bio crude production from hydrothermal liquefaction of mixed residential waste [J]. Chinese Journal of Chemical Engineering, 2024, 75(11): 46-61. |
| [7] | Qingbo Yu, Xianhua Li, Qingping Wang. Effect of Al(OH)3 prepared from fly ash on the structural and catalytic properties of g-C3N4-based materials [J]. Chinese Journal of Chemical Engineering, 2024, 74(10): 44-51. |
| [8] | Muhammad Tayyab Butt, Hengbo Yin. Effective removal of chromium, copper, and nickel heavy metal ions from industrial electroplating wastewater by in situ oxidative adsorption using sodium hypochlorite as oxidant and sodium trititanate nanorod as adsorbent [J]. Chinese Journal of Chemical Engineering, 2024, 74(10): 312-330. |
| [9] | Dong Ma, Qinhui Wang. Copper slag assisted coke reduction of phosphogypsum for sulphur dioxide preparation [J]. Chinese Journal of Chemical Engineering, 2024, 65(1): 43-53. |
| [10] | Chao Li, Shizhao Wang, Yunshan Wang, Xuebin An, Gang Yang, Yong Sun. Study on synergistic leaching of potassium and phosphorus from potassium feldspar and solid waste phosphogypsum via coupling reactions [J]. Chinese Journal of Chemical Engineering, 2024, 65(1): 117-129. |
| [11] | Reza Sacourbaravi, Zeinab Ansari-Asl, Esmaeil Darabpour. Magnetic polyacrylonitrile/ZIF-8/Fe3O4 nanocomposite bead as an efficient iodine adsorbent and antibacterial agent [J]. Chinese Journal of Chemical Engineering, 2023, 61(9): 210-220. |
| [12] | Eileen Katherine Coronado-Aldana, Cindy Lizeth Ferreira-Salazar, Nubia Yineth Piñeros-Castro, Rubén Vázquez-Medina, Felipe A. Perdomo. Thermodynamic analysis, synthesis, characterization, and evaluation of 1-ethyl-3-methylimidazolium chloride: Study of its effect on pretreated rice husk [J]. Chinese Journal of Chemical Engineering, 2023, 60(8): 143-154. |
| [13] | Sufei Wang, Mengjie Hao, Danyang Xiao, Tianmiao Zhang, Hua Li, Zhongshan Chen. Synthesis of porous carbon nanomaterials and their application in tetracycline removal from aqueous solutions [J]. Chinese Journal of Chemical Engineering, 2023, 59(7): 200-209. |
| [14] | Runze Chen, Yuran Chen, Xuemin Liang, Yapeng Kong, Yangyang Fan, Quan Liu, Zhenyu Yang, Feiying Tang, Johnny Muya Chabu, Maru Dessie Walle, Liqiang Wang. Oxidative exfoliation of spent cathode carbon: A two-in-one strategy for its decontamination and high-valued application [J]. Chinese Journal of Chemical Engineering, 2023, 59(7): 262-269. |
| [15] | Haike Li, Xindong Li, Guozai Ouyang, Lang Li, Zhaohuang Zhong, Meng Cai, Wenhao Li, Wanfu Huang. Tannic acid/Fe3+ interlayer for preparation of high-permeability polyetherimide organic solvent nanofiltration membranes for organic solvent separation [J]. Chinese Journal of Chemical Engineering, 2023, 57(5): 17-29. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||
京公网安备 11010102001993号 
