Chinese Journal of Chemical Engineering ›› 2023, Vol. 61 ›› Issue (9): 210-220.DOI: 10.1016/j.cjche.2023.03.010
Previous Articles Next Articles
Reza Sacourbaravi1, Zeinab Ansari-Asl1, Esmaeil Darabpour2
Received:
2022-10-26
Revised:
2023-03-18
Online:
2023-12-14
Published:
2023-09-28
Contact:
Zeinab Ansari-Asl,E-mail:z.ansari@scu.ac.ir
Supported by:
Reza Sacourbaravi1, Zeinab Ansari-Asl1, Esmaeil Darabpour2
通讯作者:
Zeinab Ansari-Asl,E-mail:z.ansari@scu.ac.ir
基金资助:
Reza Sacourbaravi, Zeinab Ansari-Asl, Esmaeil Darabpour. Magnetic polyacrylonitrile/ZIF-8/Fe3O4 nanocomposite bead as an efficient iodine adsorbent and antibacterial agent[J]. Chinese Journal of Chemical Engineering, 2023, 61(9): 210-220.
Reza Sacourbaravi, Zeinab Ansari-Asl, Esmaeil Darabpour. Magnetic polyacrylonitrile/ZIF-8/Fe3O4 nanocomposite bead as an efficient iodine adsorbent and antibacterial agent[J]. 中国化学工程学报, 2023, 61(9): 210-220.
Add to citation manager EndNote|Ris|BibTeX
URL: https://cjche.cip.com.cn/EN/10.1016/j.cjche.2023.03.010
[1] E.A. Abdel-Galil, A.S. Tourky, A.E. Kasem, Sorption of some radionuclides from nuclear waste effluents by polyaniline/SiO2 composite: Characterization, thermal stability, and gamma irradiation studies, Appl. Radiat. Isot. 156 (2020) 109009. [2] S. Yang, C. Han, X. Wang, M. Nagatsu, Characteristics of cesium ion sorption from aqueous solution on bentonite- and carbon nanotube-based composites, J. Hazard. Mater. 274 (2014) 46–52. [3] H.G. Mobtaker, T. Yousefi, S.M.Pakzad, Cesium removal from nuclear waste using a magnetical CuHCNPAN nano composite, J. Nucl. Mater. 482 (2016) 306–312. [4] Z. Tian, T.S. Chee, L. Zhu, T. Duan, X. Zhang, L. Lei, C. Xiao, Comprehensive comparison of bismuth and silver functionalized nickel foam composites in capturing radioactive gaseous iodine, J. Hazard. Mater. 417 (2021) 125978. [5] M. Yadollahi, H. Hamadi, V. Nobakht, Capture of iodine in solution and vapor phases by newly synthesized and characterized encapsulated Cu2O nanoparticles into the TMU-17-NH2 MOF, J. Hazard. Mater. 399 (2020) 122872. [6] P. Liu, T. Chen, J.G. Zheng, Removal of iodate from aqueous solution using diatomite/nano titanium dioxide composite as adsorbent, J. Radioanal. Nucl. Chem. 324 (3) (2020) 1179–1188. [7] X. Zhang, P. Gu, S. Zhou, X. Li, G. Zhang, L. Dong, Enhanced removal of iodide ions by nano Cu2O/Cu modified activated carbon from simulated wastewater with improved countercurrent two-stage adsorption, Sci. Total Environ. 626 (2018) 612–620. [8] J. Zhou, S. Hao, L. Gao, Y. Zhang, Study on adsorption performance of coal based activated carbon to radioactive iodine and stable iodine, Ann. Nucl. Energy 72 (2014) 237–241. [9] Z. Ma, Y. Han, J. Qi, Z. Qu, X. Wang, High iodine adsorption by lignin-based hierarchically porous flower-like carbon nanosheets, Ind. Crops Prod. 169 (2021) 113649. [10] J. Panda, J.K. Sahoo, P.K. Panda, S.N. Sahu, M. Samal, S.K. Pattanayak, R.Sahu, Adsorptive behavior of zeolitic imidazolate framework-8 towards anionic dye in aqueous media: Combined experimental and molecular docking study, J. Mol. Liq. 278 (2019) 536–545. [11] J.J. Liu, J.J. Fu, G.J. Li, T. Liu, S.B. Xia, F.X. Cheng, A water-stable photochromic MOF with controllable iodine sorption and efficient removal of dichromate, CrystEngComm 23 (43) (2021) 7628–7634. [12] G. Mehlana, G. Ramon, S.A. Bourne, A 4-fold interpenetrated diamondoid metal–organic framework with large channels exhibiting solvent sorption properties and high iodine capture, Microporous Mesoporous Mater. 231 (2016) 21–30. [13] A. Bieniek, A.P. Terzyk, M. Wiśniewski, K. Roszek, P. Kowalczyk, L. Sarkisov, S. Keskin, K. Kaneko, MOF materials as therapeutic agents, drug carriers, imaging agents and biosensors in cancer biomedicine: Recent advances and perspectives, Prog. Mater. Sci. 117 (2021) 100743. [14] Y. Shi, S. Wu, Z. Wang, X. Bi, M. Huang, Y. Zhang, J. Jin, Mixed matrix membranes with highly dispersed MOF nanoparticles for improved gas separation, Sep. Purif. Technol. 277 (2021) 119449. [15] S. Govindaraju, S.K. Arumugasamy, G. Chellasamy, K. Yun, Zn-MOF decorated bio activated carbon for photocatalytic degradation, oxygen evolution and reduction catalysis, J. Hazard. Mater. 421 (2022) 126720. [16] J. Panda, S.N. Sahu, J.K. Sahoo, S.P. Biswal, S.K. Pattanayak, R. Samantaray, R. Sahu, Efficient removal of two anionic dyes by a highly robust zirconium based metal organic framework from aqueous medium: Experimental findings with molecular docking study, Environ. Nanotechnol. Monit. Manag. 14 (2020) 100340. [17] Y.Z. Tang, H.L. Huang, J. Li, W.J. Xue, C.L. Zhong, IL-induced formation of dynamic complex iodide anions in IL@MOF composites for efficient iodine capture, J. Mater. Chem. A 7 (31) (2019) 18324–18329. [18] M. Elshahat, A. Abdelhamid, R. Abdelhameed, Capture of iodide from wastewater by effective adsorptive membrane synthesized from MIL-125-NH2 and cross-linked chitosan, Carbohydr. Polym. 231 (2020) 115742. [19] A. Gogia, P. Das, S.K. Mandal, Tunable strategies involving flexibility and angularity of dual linkers for a 3D metal–organic framework capable of multimedia iodine capture, ACS Appl. Mater. Interfaces 12 (41) (2020) 46107–46118. [20] M.R. Azhar, Y. Arafat, M. Khiadani, S.B. Wang, Z.P. Shao, Water-stable MOFs-based core–shell nanostructures for advanced oxidation towards environmental remediation, Compos. B Eng. 192 (2020) 107985. [21] S. Dhaka, R. Kumar, A. Deep, M.B. Kurade, S.W. Ji, B.H. Jeon, Metal–organic frameworks (MOFs) for the removal of emerging contaminants from aquatic environments, Coord. Chem. Rev. 380 (2019) 330–352. [22] X.J. Ma, Y.T. Chai, P. Li, B. Wang, Metal–organic framework films and their potential applications in environmental pollution control, Acc. Chem. Res. 52 (5) (2019) 1461–1470. [23] B. Arabsorkhi, H. Sereshti, A. Abbasi, Electrospun metal–organic framework/polyacrylonitrile composite nanofibrous mat as a microsorbent for the extraction of tetracycline residue in human blood plasma, J. Sep. Sci. 42 (8) (2019) 1500–1508. [24] P. Bansal, R. Purwar, Polyacrylonitrile/clay nanofibrous nanocomposites for efficient adsorption of Cr (VI) ions, J. Polym. Res. 28 (1) (2021) 7. [25] D.W. Sun, Y.F. Li, B. Zhang, X.B. Pan, Preparation and characterization of novel nanocomposites based on polyacrylonitrile/kaolinite, Compos. Sci. Technol. 70 (6) (2010) 981–988. [26] P.L. Hariani, M. Faizal, R. Ridwan, M. Marsi, D. Setiabudidaya, Synthesis and properties of Fe3O4 nanoparticles by co-precipitation method to removal procion dye, Int. J. Environ. Sci. Dev. (2013) 336–340. [27] N.M. Mahmoodi, M. Oveisi, A. Taghizadeh, M. Taghizadeh, Synthesis of pearl necklace-like ZIF-8@chitosan/PVA nanofiber with synergistic effect for recycling aqueous dye removal, Carbohydr. Polym. 227 (2020) 115364. [28] Y. Li, K. Zhou, M. He, J.F. Yao, Synthesis of ZIF-8 and ZIF-67 using mixed-base and their dye adsorption, Microporous Mesoporous Mater. 234 (2016) 287–292. [29] L. Li, R. Chen, Y.R. Li, T.T. Xiong, Y.Q. Li, Novel cotton fiber-covalent organic framework hybrid monolith for reversible capture of iodine, Cellulose 27 (10) (2020) 5879–5892. [30] A. Gamarra-Montes, B. Missagia, J. Morató, S. Muñoz-Guerra, Antibacterial films made of ionic complexes of poly(γ-glutamic acid) and ethyl lauroyl arginate, Polymers 10 (1) (2017) 21. [31] M. Tüfekci, S.G. Durak, İ. Pir, T.O. Acar, G.T. Demirkol, N. Tüfekci, Manufacturing, characterisation and mechanical analysis of polyacrylonitrile membranes, Polymers 12 (10) (2020) 2378. [32] D. Chauhan, S. Afreen, S. Mishra, N. Sankararamakrishnan, Synthesis, characterization and application of zinc augmented aminated PAN nanofibers towards decontamination of chemical and biological contaminants, J. Ind. Eng. Chem. 55 (2017) 50–64. [33] A. Ulu, Metal–organic frameworks (MOFs): A novel support platform for ASNase immobilization, J. Mater. Sci. 55 (14) (2020) 6130–6144. [34] M. Adnan, K. Li, L. Xu, Y.J. Yan, X-shaped ZIF-8 for immobilization rhizomucor Miehei lipase via encapsulation and its application toward biodiesel production, Catalysts 8 (3) (2018) 96. [35] L. Nalbandian, E. Patrikiadou, V. Zaspalis, A. Patrikidou, E. Hatzidaki, C.N. Papandreou, Magnetic nanoparticles in medical diagnostic applications: Synthesis, characterization and proteins conjugation, Curr. Nanosci. 12 (4) (2016) 455–468. [36] Y. Wei, B. Han, X.Y. Hu, Y.H. Lin, X.Z. Wang, X.L. Deng, Synthesis of Fe3O4 nanoparticles and their magnetic properties, Procedia Eng. 27 (2012) 632–637. [37] J. Bag, S. Mukherjee, S.K. Ghosh, A. Das, A. Mukherjee, J.K. Sahoo, K.S. Tung, H. Sahoo, M. Mishra, Fe3O4 coated guargum nanoparticles as non-genotoxic materials for biological application, Int. J. Biol. Macromol. 165 (Pt A) (2020) 333–345. [38] P.S. Saud, Z.K. Ghouri, B. Pant, T. An, J.H. Lee, M. Park, H.Y. Kim, Photocatalytic degradation and antibacterial investigation of nano synthesized Ag3VO4 particles @PAN nanofibers, Carbon Lett. 18 (2016) 30–36. [39] T.O. Siyanbola, T. Gurunathan, A.F. Akinsola, J.A. Adekoya, A.A. Akinsiku, O. Aladesuyi, S. Rajiv, S. Mohanty, T.S. Natarajan, S.K. Nayak, Antibacterial and morphological studies of electrospun silver-impregnated polyacrylonitrile nanofibre, Orient. J. Chem. 32 (1) (2016) 159–164. [40] N.A.H. Md Nordin, A.F. Ismail, N. Yahya, Zeolitic imidazole framework 8 decorated graphene oxide (ZIF-8/GO) mixed matrix membrane (MMM) for CO2/CH4 separation, J. Teknol. 79 (1–2) (2017), https://doi.org/10.11113/jt.v79.10438. [41] J.W. Wang, N.X. Li, Z.R. Li, J.R. Wang, X. Xu, C.S. Chen, Preparation and gas separation properties of Zeolitic imidazolate frameworks-8 (ZIF-8) membranes supported on silicon nitride ceramic hollow fibers, Ceram. Int. 42 (7) (2016) 8949–8954. [42] X.B. Yang, J. Chen, H.X. Lai, J.P. Hu, M. Fang, X.T. Luo, MOF-derived Co/ZnO@silicalite-1 photocatalyst with high photocatalytic activity, RSC Adv. 7 (61) (2017) 38519–38525. [43] K.S. Loh, Y.H. Lee, A. Musa, A.A. Salmah, I. Zamri, Use of Fe3O4 nanoparticles for enhancement of biosensor response to the herbicide 2,4-dichlorophenoxyacetic acid, Sensors 8 (9) (2008) 5775–5791. [44] B. Valizadeh, T.N. Nguyen, B. Smit, K.C. Stylianou, Porous metal–organic framework@polymer beads for iodine capture and recovery using a gas-sparged column, Adv. Funct. Mater. 28 (30) (2018) 1801596. [45] Q. Zhao, L. Zhu, G.H. Lin, G.Y. Chen, B. Liu, L. Zhang, T. Duan, J.H. Lei, Controllable synthesis of porous Cu-BTC@polymer composite beads for iodine capture, ACS Appl. Mater. Interfaces 11 (45) (2019) 42635–42645. [46] D.F. Sava, M.A. Rodriguez, K.W. Chapman, P.J. Chupas, J.A. Greathouse, P.S. Crozier, T.M. Nenoff, Capture of volatile iodine, a gaseous fission product, by zeolitic imidazolate framework-8, J. Am. Chem. Soc. 133 (32) (2011) 12398–12401. [47] X. Qian, B. Wang, Z.Q. Zhu, H.X. Sun, F. Ren, P. Mu, C.H. Ma, W.D. Liang, A. Li, Novel N-rich porous organic polymers with extremely high uptake for capture and reversible storage of volatile iodine, J. Hazard. Mater. 338 (2017) 224–232. [48] Y. Wang, G.A. Sotzing, R. Weiss, Sorption of iodine by polyurethane and melamine-formaldehyde foams using iodine sublimation and iodine solutions, Polymer 47 (8) (2006) 2728–2740. [49] Z.J. Yan, Y. Yuan, Y.Y. Tian, D.M. Zhang, G.S. Zhu, Highly efficient enrichment of volatile iodine by charged porous aromatic frameworks with three sorption sites, Angew. Chem. Int. Ed. 54 (2015) 12733–12737. [50] S.U. Nandanwar, K. Coldsnow, M. Green, V. Utgikar, P. Sabharwall, D.E. Aston, Activity of nanostructured C@ETS-10 sorbent for capture of volatile radioactive iodine from gas stream, Chem. Eng. J. 287 (2016) 593–601. [51] B.J. Riley, D.A. Pierce, J. Chun, J. Matyáš, W.C. Lepry, T.G. Garn, J.D. Law, M.G. Kanatzidis, Polyacrylonitrile-chalcogel hybrid sorbents for radioiodine capture, Environ. Sci. Technol. 48 (10) (2014) 5832–5839. [52] E.M. Mahdi, A.K. Chaudhuri, J.C. Tan, Capture and immobilisation of iodine (I2) utilising polymer-based ZIF-8 nanocomposite membranes, Mol. Syst. Des. Eng. 1 (1) (2016) 122–131. [53] T. Madrakian, A. Afkhami, M. Ali Zolfigol, M. Ahmadi, N. Koukabi, Application of modified silica coated magnetite nanoparticles for removal of iodine from water samples, Nano-Micro Lett. 4 (1) (2012) 57–63. [54] L.Y. Wang, P. Chen, X.T. Dong, W. Zhang, S. Zhao, S.T. Xiao, Y.G. Ouyang, Porous MOF-808@PVDF beads for removal of iodine from gas streams, RSC Adv. 10 (73) (2020) 44679–44687. [55] Q. Yu, X.H. Jiang, Z.J. Cheng, Y.W. Liao, Q. Pu, M. Duan, Millimeter-sized Bi2S3@polyacrylonitrile hybrid beads for highly efficient iodine capture, New J. Chem. 44 (39) (2020) 16759–16768. [56] M. El-Shahat, A.E. Abdelhamid, R.M. Abdelhameed, Capture of iodide from wastewater by effective adsorptive membrane synthesized from MIL-125-NH2 and cross-linked chitosan, Carbohydr. Polym. 231 (2020) 115742. [57] P. Chen, X.H. He, M.B. Pang, X.T. Dong, S. Zhao, W. Zhang, Iodine capture using Zr-based metal–organic frameworks (Zr-MOFs): Adsorption performance and mechanism, ACS Appl. Mater. Interfaces 12 (18) (2020) 20429–20439. [58] F. Ren, Z.Q. Zhu, X. Qian, W.D. Liang, P. Mu, H.X. Sun, J.H. Liu, A. Li, Novel thiophene-bearing conjugated microporous polymer honeycomb-like porous spheres with ultrahigh iodine uptake, Chem. Commun. 52 (63) (2016) 9797–9800. [59] G. Lin, L. Zhu, T. Duan, L. Zhang, B. Liu, J. Lei, Efficient capture of iodine by a polysulfide-inserted inorganic NiTi-layered double hydroxides, Chem. Eng. J. 378 (2019) 122181. [60] Z. Wang, Y. He, L. Zhu, L. Zhang, B. Liu, Y.K. Zhang, T. Duan, Natural porous wood decorated with ZIF-8 for high efficient iodine capture, Mater. Chem. Phys. 258 (2021) 123964. [61] F. Yu, Y.T. Chen, Y.S. Wang, C. Liu, J.X. Qin, Synthesis of metal–organic framework nanocrystals immobilized with 3D flowerlike Cu–Bi-layered double hydroxides for iodine efficient removal, J. Mater. Res.35 (3) (2020) 299–311. [62] X. Zhang, P.Y. Zhang, Z. Wu, L. Zhang, G.M. Zeng, C.J. Zhou, Adsorption of methylene blue onto humic acid-coated Fe3O4 nanoparticles, Colloids Surf. A Physicochem. Eng. Aspects 435 (2013) 85–90. [63] W. Zhang, Q. Li, Q. Mao, G. He, Cross-linked chitosan microspheres: An efficient and eco-friendly adsorbent for iodide removal from waste water, Carbohydr. Polym. 209 (2019) 215–222. [64] A.C. Tella, J.T. Bamgbose, V.O. Adimula, M. Omotoso, S.E. Elaigwu, V.T. Olayemi, O.A. Odunola, Synthesis of metal–organic frameworks (MOFs) MIL-100(Fe) functionalized with thioglycolic acid and ethylenediamine for removal of eosin B dye from aqueous solution, SN Appl. Sci. 3 (1) (2021) 136. [65] Y.H. Wu, Y.B. Xie, F.Y. Zhong, J.K. Gao, J.M.Yao, Fabrication of bimetallic Hofmann-type metal–organic frameworks@cellulose aerogels for efficient iodine capture, Microporous Mesoporous Mater. 306 (2020) 110386. [66] M. Li, G.Y. Yuan, Y. Zeng, Y.Y. Yang, J.L. Liao, J.J. Yang, N. Liu, Flexible surface-supported MOF membrane via a convenient approach for efficient iodine adsorption, J. Radioanal. Nucl. Chem. 324 (3) (2020) 1167–1177. [67] T.A. Makhetha, S.C. Ray, R.M. Moutloali, Zeolitic imidazolate framework-8-encapsulated nanoparticle of Ag/Cu composites supported on graphene oxide: Synthesis and antibacterial activity, ACS Omega 5 (17) (2020) 9626–9640. [68] J.K. Sahoo, S.K. Paikra, M. Mishra, H. Sahoo, Amine functionalized magnetic iron oxide nanoparticles: Synthesis, antibacterial activity and rapid removal of Congo red dye, J. Mol. Liq. 282 (2019) 428–440. [69] J.K. Sahoo, M. Konar, J. Rath, D. Kumar, H. Sahoo, Magnetic hydroxyapatite nanocomposite: Impact on eriochrome black-T removal and antibacterial activity, J. Mol. Liq. 294 (2019) 111596. [70] J.K. Sahoo, M. Konar, J. Rath, D. Kumar, H.Sahoo, Hexagonal strontium ferrite: Cationic dye adsorption and antibacterial activity, Sep. Sci. Technol. 55 (3) (2020) 415–430. [71] B.J. Smith, A.C. Overholts, N. Hwang, W.R. Dichtel, Insight into the crystallization of amorphous imine-linked polymer networks to 2D covalent organic frameworks, Chem. Commun. 52 (18) (2016) 3690–3693. |
[1] | Yinji Wan, Dekai Kong, Feng Xiong, Tianjie Qiu, Song Gao, Qiuning Zhang, Yefan Miao, Mulin Qin, Shengqiang Wu, Yonggang Wang, Ruiqin Zhong, Ruqiang Zou. Enhancing hydrophobicity via core–shell metal organic frameworks for high-humidity flue gas CO2 capture [J]. Chinese Journal of Chemical Engineering, 2023, 61(9): 82-89. |
[2] | Mohamed Mobarak, Saleh Qaysi, Mohamed Saad Ahmed, Yasser F. Salama, Ahmed Mohamed Abbass, Mohamed Abd Elrahman, Hamdy A. Abdel-Gawwad, Moaaz K. Seliem. Insights into the adsorption performance and mechanism of Cr(VI) onto porous nanocomposite prepared from gossans and modified coal interface: Steric, energetic, and thermodynamic parameters interpretations [J]. Chinese Journal of Chemical Engineering, 2023, 61(9): 118-128. |
[3] | Liu He, Yiyang Qiu, Chu Yao, Guojun Lan, Na Li, Huacong Zhou, Quansheng Liu, Xiucheng Sun, Zaizhe Cheng, Ying Li. Role of intrinsic defects on carbon adsorbent for enhanced removal of Hg2+ in aqueous solution [J]. Chinese Journal of Chemical Engineering, 2023, 61(9): 129-139. |
[4] | Yang Yang, Dandan Liu, Xing Liang, Xiaobing Li. Influence of mineral species on oil–soil interfacial interaction in petroleum-contaminated soils [J]. Chinese Journal of Chemical Engineering, 2023, 61(9): 147-156. |
[5] | Dongdong Hu, Yinglei Wang, Chuan Xiao, Yifei Hu, Zhiyong Zhou, Zhongqi Ren. Studies on ammonium dinitramide and 3,4-diaminofurazan cocrystal for tuning the hygroscopicity [J]. Chinese Journal of Chemical Engineering, 2023, 61(9): 157-164. |
[6] | Chun Bai, Huifang Zhang, Qinglong Luo, Xiushen Ye, Haining Liu, Quan Li, Jun Li, Zhijian Wu. Boron separation by adsorption and flotation with Mg–Al-LDHs and SDBS from aqueous solution [J]. Chinese Journal of Chemical Engineering, 2023, 61(9): 192-200. |
[7] | Wenming Hao, Basma I. Waisi, Timothy M. Vadas, Jeffrey R. McCutcheon. Chemically activated carbon nanofibers for adsorptive removal of bisphenol-A: Batch adsorption and breakthrough curve study [J]. Chinese Journal of Chemical Engineering, 2023, 61(9): 248-259. |
[8] | Ali Nikkhah, Hasan Nikkhah, Hadis langari, Alireza Nouri, Abdul Wahab Mohammad, Ang Wei Lun, Ng law Yong, Rosiah Rohani, Ebrahim Mahmoudi. MXene: From synthesis to environment remediation [J]. Chinese Journal of Chemical Engineering, 2023, 61(9): 260-280. |
[9] | Yingli Li, Zhishuncheng Li, Guangfei Qu, Rui Li, Shuaiyu Liang, Junhong Zhou, Wei Ji, Huiming Tang. Mechanism, behaviour and application of iron nitrate modified carbon nanotube composites for the adsorption of arsenic in aqueous solutions [J]. Chinese Journal of Chemical Engineering, 2023, 60(8): 26-36. |
[10] | Jing Huang, Honghui Cai, Qian Zhao, Yunpeng Zhou, Haibo Liu, Jing Wang. Dual-functional pyrene implemented mesoporous silicon material used for the detection and adsorption of metal ions [J]. Chinese Journal of Chemical Engineering, 2023, 60(8): 108-117. |
[11] | Eileen Katherine Coronado-Aldana, Cindy Lizeth Ferreira-Salazar, Nubia Yineth Piñeros-Castro, Rubén Vázquez-Medina, Felipe A. Perdomo. Thermodynamic analysis, synthesis, characterization, and evaluation of 1-ethyl-3-methylimidazolium chloride: Study of its effect on pretreated rice husk [J]. Chinese Journal of Chemical Engineering, 2023, 60(8): 143-154. |
[12] | Lingli Chen, Yueting Shi, Sijun Xu, Junle Xiong, Fang Gao, Shengtao Zhang, Hongru Li. Enhanced adsorption of target branched compounds including antibiotic norfloxacin frameworks on mild steel surface for efficient protection: An experimental and molecular modelling study [J]. Chinese Journal of Chemical Engineering, 2023, 60(8): 212-227. |
[13] | Alexander Nti Kani, Evans Dovi, Aaron Albert Aryee, Runping Han, Zhaohui Li, Lingbo Qu. Mechanisms and reusability potentials of zirconium-polyaziridine-engineered tiger nut residue towards anionic pollutants [J]. Chinese Journal of Chemical Engineering, 2023, 60(8): 275-292. |
[14] | Yuan Liu, Hanting Xiong, Jingwen Chen, Shixia Chen, Zhenyu Zhou, Zheling Zeng, Shuguang Deng, Jun Wang. One-step ethylene separation from ternary C2 hydrocarbon mixture with a robust zirconium metal-organic framework [J]. Chinese Journal of Chemical Engineering, 2023, 59(7): 9-15. |
[15] | Hui Jiang, Zijian Zhao, Ning Yu, Yi Qin, Zhengwei Luo, Wenhua Geng, Jianliang Zhu. Synthesis, characterization, and performance comparison of boron using adsorbents based on N-methyl-D-glucosamine [J]. Chinese Journal of Chemical Engineering, 2023, 59(7): 16-31. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||