[1] S.J. Peng, L.L. Li, J.K.Y. Lee, L.L. Tian, M. Srinivasan, S. Adams, S.R amakrishna, Electrospun carbon nanofibers and their hybrid composites as advanced materials for energy conversion and storage, Nano Energy 22 (2016) 361–395. [2] C. Merino, P. Soto, E. Vilaplana-Ortego, J.M. Gomez de Salazar, F. Pico, J.M. Rojo, Carbon nanofibres and activated carbon nanofibres as electrodes in supercapacitors, Carbon 43 (3) (2005) 551–557. [3] M.J. Zhi, S.H. Liu, Z.L. Hong, N.Q. Wu, Electrospun activated carbon nanofibers for supercapacitor electrodes, RSC Adv. 4 (82) (2014) 43619–43623. [4] X. Li, Y. Chen, H. Huang, Y. Mai, L. Zhou, Electrospun carbon-based nanostructured electrodes for advanced energy storage—A review, Energy Storage Mater. 5 (2016) 58–92. [5] S.S. Manickam, U. Karra, L.W. Huang, N.N. Bui, B.K. Li, J.R. McCutcheon, Activated carbon nanofiber anodes for microbial fuel cells, Carbon 53 (2013) 19–28. [6] U. Karra, S.S. Manickam, J.R. McCutcheon, N. Patel, B.K. Li, Power generation and organics removal from wastewater using activated carbon nanofiber (ACNF) microbial fuel cells (MFCs), Int. J. Hydrog. Energy 38 (3) (2013) 1588–1597. [7] K.J. Lee, N. Shiratori, G.H. Lee, J. Miyawaki, I. Mochida, S.H. Yoon, J. Jang, Activated carbon nanofiber produced from electrospun polyacrylonitrile nanofiber as a highly efficient formaldehyde adsorbent, Carbon 48 (15) (2010) 4248–4255. [8] J.Y. Liu, S.P. Wang, J.M. Yang, J.J. Liao, M. Lu, H.J. Pan, L. An, ZnCl2 activated electrospun carbon nanofiber for capacitive desalination, Desalination 344 (2014) 446–453. [9] G. Wang, C. Pan, L.P. Wang, Q. Dong, C. Yu, Z.B. Zhao, J.S. Qiu, Activated carbon nanofiber webs made by electrospinning for capacitive deionization, Electrochim. Acta 69 (2012) 65–70. [10] J.V. Patil, S.S. Mali, A.S. Kamble, C.K. Hong, J.H. Kim, P.S. Patil, Electrospinning: A versatile technique for making of 1D growth of nanostructured nanofibers and its applications: An experimental approach, Appl. Surf. Sci. 423 (2017) 641–674. [11] J.S. Im, S.J. Park, T.J. Kim, Y.H. Kim, Y.S. Lee, The study of controlling pore size on electrospun carbon nanofibers for hydrogen adsorption, J. Colloid Interface Sci. 318 (1) (2008) 42–49. [12] N. Yusof, A.F. Ismail, Post spinning and pyrolysis processes of polyacrylonitrile (PAN)-based carbon fiber and activated carbon fiber: A review, J. Anal. Appl. Pyrolysis 93 (2012) 1–13. [13] S.K. Nataraj, K.S. Yang, T.M.Aminabhavi, Polyacrylonitrile-based nanofibers—A state-of-the-art review, Prog. Polym. Sci. 37 (3) (2012) 487–513. [14] Y. Bai, Z.H. Huang, M.X. Wang, F.Y. Kang, Adsorption of benzene and ethanol on activated carbon nanofibers prepared by electrospinning, Adsorption 19 (5) (2013) 1035–1043. [15] H.M. Lee, H.G. Kim, S.J. Kang, S.J. Park, K.H. An, B.J. Kim, Effects of pore structures on electrochemical behaviors of polyacrylonitrile (PAN)-based activated carbon nanofibers, J. Ind. Eng. Chem. 21 (2015) 736–740. [16] V. Jiménez, P. Sánchez, J.L. Valverde, A. Romero, Influence of the activating agent and the inert gas (type and flow) used in an activation process for the porosity development of carbon nanofibers, J. Colloid Interface Sci. 336 (2) (2009) 712–722. [17] Z. Gong, S. Li, J. Ma, X. Zhang, Synthesis of recyclable powdered activated carbon with temperature responsive polymer for bisphenol A removal, Sep. Purif. Technol. 157 (2016) 131–140. [18] M.I. Bautista-Toledo, J. Rivera-Utrilla, R. Ocampo-Pérez, F. Carrasco-Marín, M. Sánchez-Polo, Cooperative adsorption of bisphenol-A and chromium(III) ions from water on activated carbons prepared from olive-mill waste, Carbon 73 (2014) 338–350. [19] G. Liu, J. Ma, X. Li, Q. Qin, Adsorption of bisphenol A from aqueous solution onto activated carbons with different modification treatments, J. Hazard. Mater. 164 (2–3) (2009) 1275–1280. [20] W.T. Tsai, H.C. Hsu, T.Y. Su, K.Y. Lin, C.M. Lin, Adsorption characteristics of bisphenol-A in aqueous solutions onto hydrophobic zeolite, J. Colloid Interface Sci. 299 (2) (2006) 513–519. [21] W.T. Tsai, C.W. Lai, T.Y. Su, Adsorption of bisphenol-A from aqueous solution onto minerals and carbon adsorbents, J. Hazard. Mater. 134 (1–3) (2006) 169–175. [22] M.H. Dehghani, M. Ghadermazi, A. Bhatnagar, P. Sadighara, G. Jahed-Khaniki, B. Heibati, G.McKay, Adsorptive removal of endocrine disrupting bisphenol A from aqueous solution using chitosan, J. Environ. Chem. Eng. 4 (3) (2016) 2647–2655. [23] M.H. Dehghani, A.H. Mahvi, N. Rastkari, R. Saeedi, S. Nazmara, E. Iravani, Adsorption of bisphenol A (BPA) from aqueous solutions by carbon nanotubes: Kinetic and equilibrium studies, Desalin. Water Treat. 54 (1) (2015) 84–92. [24] J. Kwon, B. Lee, Bisphenol A adsorption using reduced graphene oxide prepared by physical and chemical reduction methods, Chem. Eng. Res. Des. 104 (2015) 519–529. [25] P. Ndagijimana, X.J. Liu, Z.W. Li, G.W. Yu, Y. Wang, The synthesis strategy to enhance the performance and cyclic utilization of granulated activated carbon-based sorbent for bisphenol A and triclosan removal, Environ. Sci. Pollut. Res. 27 (13) (2020) 15758–15771. [26] P. Ndagijimana, X. Liu, Q. Xu, Z. Li, B. Pan, Y. Wang, Simultaneous removal of ibuprofen and bisphenol A from aqueous solution by an enhanced cross-linked activated carbon and reduced graphene oxide composite, Sep. Purif. Technol. 299 (2022) 121681. [27] W. Cheng, W. Gao, X. Cui, J. Ma, R. Li, Phenol adsorption equilibrium and kinetics on zeolite X/activated carbon composite, J. Taiwan Inst. Chem. Eng. 62 (2016) 192–198. [28] K. Ortiz-Martínez, P. Reddy, W.A. Cabrera-Lafaurie, F.R. Román, A.J. Hernández-Maldonado, Single and multi-component adsorptive removal of bisphenol A and 2,4-dichlorophenol from aqueous solutions with transition metal modified inorganic–organic pillared clay composites: Effect of pH and presence of humic acid, J. Hazard. Mater. 312 (2016) 262–271. [29] Z. Xu, J.G. Cai, B.C. Pan, Mathematically modeling fixed-bed adsorption in aqueous systems, J. Zhejiang Univ. Sci. A 14 (3) (2013) 155–176. [30] C.H. Kim, C.M. Yang, Y.A. Kim, K.S. Yang, Pore engineering of nanoporous carbon nanofibers toward enhanced supercapacitor performance, Appl. Surf. Sci. 497 (2019) 143693. [31] B.I. Waisi, S.S. Manickam, N.E. Benes, A. Nijmeijer, J.R. McCutcheon, Activated carbon nanofiber nonwovens: Improving strength and surface area by tuning fabrication procedure, Ind. Eng. Chem. Res. 58 (10) (2019) 4084–4089. [32] G.F. Hu, X.H. Zhang, X.Y. Liu, J.Y. Yu, B. Ding, Strategies in precursors and post treatments to strengthen carbon nanofibers, Adv. Fiber Mater. 2 (2) (2020) 46–63. [33] P.K. Tripathi, M.X. Liu, Y.H. Zhao, X.M. Ma, L.H. Gan, O. Noonan, C.Z. Yu, Enlargement of uniform micropores in hierarchically ordered micro–mesoporous carbon for high level decontamination of bisphenol A, J. Mater. Chem. A 2 (22) (2014) 8534–8544. [34] P.K. Tripathi, M.X. Liu, L.H. Gan, J.S. Qian, Z.J. Xu, D.Z. Zhu, N.N. Rao, High surface area ordered mesoporous carbon for high-level removal of Rhodamine B, J. Mater. Sci. 48 (22) (2013) 8003–8013. [35] V. López-Ramón, C. Moreno-Castilla, J. Rivera-Utrilla, L.R. Radovic, Ionic strength effects in aqueous phase adsorption of metal ions on activated carbons, Carbon 41 (10) (2003) 2020–2022. [36] M. Vera, D.M. Juela, C. Cruzat, E. Vanegas, Modeling and computational fluid dynamic simulation of acetaminophen adsorption using sugarcane bagasse, J. Environ. Chem. Eng. 9 (2) (2021) 105056. [37] J.Y. Song, W.H. Zou, Y.Y. Bian, F.Y. Su, R.P. Han, Adsorption characteristics of methylene blue by peanut husk in batch and column modes, Desalination 265 (1–3) (2011) 119–125. |