[1] L. Zhao, C. Lyu, Y.Li, Analysis of factors influencing plant-microbe combined remediation of soil contaminated by polycyclic aromatic hydrocarbons, Sustainability 13 (19) (2021) 10695. [2] J.W. Liu, K.H. Wei, S.W. Xu, J. Cui, J. Ma, X.L. Xiao, B.D. Xi, X.S. He, Surfactant-enhanced remediation of oil-contaminated soil and groundwater: A review, Sci. Total Environ. 756 (2021) 144142. [3] M. Marinescu, M. Toti, V. Tănase, V. Carabulea, G. Plopeanu, I. Calciu, An assessment of the effects of crude oil pollution on soil properties, Ann. Food Sci. Technol. 11 (2010) 94–99. [4] J. Zeng, Y.J. Li, Y.L. Dai, Y.C. Wu, X.G. Lin, Effects of polycyclic aromatic hydrocarbon structure on PAH mineralization and toxicity to soil microorganisms after oxidative bioremediation by laccase, Environ. Pollut. 287 (2021) 117581. [5] S. Gaur, A. Sahani, P. Chattopadhyay, S. Gupta, A. Jain, Remediation of waste engine oil contaminated soil using rhamnolipid based detergent formulation, Mater. Today Proc. (2022) 77 (1) (2023) 31–38. [6] Tian, Li, The application and progress of bioelectrochemical systems (BESs) in soil remediation: A review, Green Energy Environ. 6 (1) (2021) 50–65. [7] M.Y.D. Alazaiza, A. Albahnasawi, G.A.M. Ali, M.J.K. Bashir, N.K. Copty, S.S. Abu Amr, M.F.M. Abushammala, T.Al Maskari, Recent advances of nanoremediation technologies for soil and groundwater remediation: A review, Water 13 (16) (2021) 2186. [8] X. Sui, X.M. Wang, Y.H. Li, H.B.Ji, Remediation of petroleum-contaminated soils with microbial and microbial combined methods: Advances, mechanisms, and challenges, Sustainability 13 (16) (2021) 9267. [9] J.Q. Cui, Q.S. He, M.H. Liu, H. Chen, M.B. Sun, J.P. Wen, Comparative study on different remediation strategies applied in petroleum-contaminated soils, Int. J. Environ. Res. Public Health 17 (5) (2020) 1606. [10] U.E. Ezeji, S.O. Anyadoh, V.I. Ibekwe, Clean up of crude oil-contaminated soil, Terr. Aquat. Environ. Toxicol. 1 (2) (2007) 54-59. [11] Rengyu, Yue, Exploring the characteristics, performance, and mechanisms of a magnetic-mediated washing fluid for the cleanup of oiled beach sand, J. Hazard. Mater. 438 (2022) 129447. [12] Gang, Li, The influence of clay minerals and surfactants on hydrocarbon removal during the washing of petroleum-contaminated soil, Chem. Eng. J. 286 (2016) 191–197. [13] C.G. Hogshead, E. Manias, P. Williams, A. Lupinsky, P.Painter, Studies of bitumen–silica and oil–silica interactions in ionic liquids, Energy Fuels 25 (1) (2011) 293–299. [14] P. Gautam, R. Bajagain, S.W. Jeong, Combined effects of soil particle size with washing time and soil-to-water ratio on removal of total petroleum hydrocarbon from fuel contaminated soil, Chemosphere 250 (2020) 126206. [15] L. He, F. Lin, X.G. Li, H. Sui, Z.H. Xu, Interfacial sciences in unconventional petroleum production: From fundamentals to applications, Chem. Soc. Rev. 44 (15) (2015) 5446–5494. [16] S. Guggenheim, R.T.Martin, Definition of clay and clay mineral: Joint report of the AIPEA and CMS Nomenclature Committees, Clay Miner. 30 (3) (1995) 257–259. [17] G. Lagaly, M. Ogawa, I.Dékány, Chapter 7.3 clay mineral organic interactions. Developments in Clay Science. Amsterdam: Elsevier, 2006: 309–377. [18] A.M. Awad, S.M.R. Shaikh, R. Jalab, M.H. Gulied, M.S. Nasser, A. Benamor, S.Adham, Adsorption of organic pollutants by natural and modified clays: A comprehensive review, Sep. Purif. Technol. 228 (2019) 115719. [19] Liangliang, Deng, Effects of microstructure of clay minerals, montmorillonite, kaolinite and halloysite, on their benzene adsorption behaviors, Appl. Clay Sci. 143 (2017) 184–191. [20] H.N. Ding, S.Rahman, Experimental and theoretical study of wettability alteration during low salinity water flooding-an state of the art review, Colloids Surf. A Physicochem. Eng. Aspects 520 (2017) 622–639. [21] K. Kumar, E.K. Dao, K.K.Mohanty, Atomic force microscopy study of wettability alteration by surfactants, SPE J. 13 (2) (2008) 137–145. [22] D. Huguenot, E. Mousset, E.D. van Hullebusch, M.A. Oturan, Combination of surfactant enhanced soil washing and electro-Fenton process for the treatment of soils contaminated by petroleum hydrocarbons, J. Environ. Manage. 153 (2015) 40–47. [23] S. Mejia-Avendaño, Y. Zhi, B. Yan, J.X. Liu, Sorption of polyfluoroalkyl surfactants on surface soils: Effect of molecular structures, soil properties, and solution chemistry, Environ. Sci. Technol. 54 (3) (2020) 1513–1521. [24] J.N. Edokpayi, J.O. Odiyo, O.E. Popoola, T.A.M. Msagati, Determination and distribution of polycyclic aromatic hydrocarbons in rivers, sediments and wastewater effluents in vhembe district, South Africa, Int. J. Environ. Res. Public Health 13 (4) (2016) 387. [25] H. Yotsumoto, R.H.Yoon, Application of extended DLVO theory, J. Colloid Interface Sci. 157 (2) (1993) 426–433. [26] Y.S. Leng, Hydration force between mica surfaces in aqueous KCl electrolyte solution, Langmuir 28 (12) (2012) 5339–5349. [27] Y. Liao, X. Hao, M. An, Z. Yang, L. Ma, H. Ren, Enhancing low-rank coal flotation using mixed collector of dodecane and oleic acid: Effect of droplet dispersion and its interaction with coal particle, Fuel 280 (2020) 118634. [28] Roe-Hoan, Yoon, Application of extended DLVO theory, IV, J. Colloid Interface Sci. 181 (2) (1996) 613–626. [29] J.N. Israelachvili, R.M. Pashley, Measurement of the hydrophobic interaction between two hydrophobic surfaces in aqueous electrolyte solutions, J. Colloid Interface Sci. 98 (2) (1984) 500–514. [30] L. Mao, Application of extended DLVO theory: Modeling of flotation and hydrophobicity of dodecane, Virginia Tech. (1998). https://www.semanticscholar.org/paper/3d9535f4dd9f8e5dd56401a5052f1ddad01bedb6. [31] D. Derek, Li, Chemical compositions of improved model asphalt systems for molecular simulations, Fuel 115 (2014) 347–356. [32] M.C. Luo, Z.L. Zhao, Y.L. Zhang, Y.J. Sun, Y. Xing, F. Lv, Y. Yang, X. Zhang, S. Hwang, Y.N. Qin, J.Y. Ma, F. Lin, D. Su, G. Lu, S.J. Guo, PdMo bimetallene for oxygen reduction catalysis, Nature 574 (7776) (2019) 81–85. [33] Yang, Yang, Adsorption behavior of oil-displacing surfactant at oil/water interface: Molecular simulation and experimental, J. Water Process. Eng. 36 (2020) 101292. [34] R.T. Cygan, J.J. Liang, A.G.Kalinichev, Molecular models of hydroxide, oxyhydroxide, and clay phases and the development of a general force field, J. Phys. Chem. B 108 (4) (2004) 1255–1266. [35] S.J. Tan, L. Prasetyo, Y. Zeng, D.D. Do, D. Nicholson, On the consistency of NVT, NPT, μVT and Gibbs ensembles in the framework of kinetic Monte Carlo-Fluid phase equilibria and adsorption of pure component systems, Chem. Eng. J. 316 (2017) 243–254. [36] R. A, Alian, A critical study of the parameters governing molecular dynamics simulations of nanostructured materials, Comput. Mater. Sci. 153 (2018) 183–199. [37] C. Seniya, G.J. Khan, K. Uchadia, Identification of potential herbal inhibitor of acetylcholinesterase associated Alzheimer’s disorders using molecular docking and molecular dynamics simulation, Biochem. Res. Int. 2014 (2014) 705451. [38] N.P. Freitag, D.R.Exelby, A SARA-based model for simulating the pyrolysis reactions that occur in high-temperature EOR processes, J. Can. Petrol. Technol. 45 (3) (2006) 38-44. [39] W. Chen, B. Lin, Characteristics of products from the pyrolysis of oil palm fiber and its pellets in nitrogen and carbon dioxide atmospheres, Energy 94 (2016) 569–578. [40] A. Álvarez, C. Pizarro, R. García, J.L. Bueno, A.G. Lavín, Determination of kinetic parameters for biomass combustion, Bioresour. Technol. 216 (2016) 36–43. [41] R. Mohsin, A.J. Basim, H. Al-Marzouqi Ali, I. Abrar, Kinetic and thermodynamic analyses of date palm surface fibers pyrolysis using Coats-Redfern method, Renew. Energy 183 (2022) 67–77. [42] X.M. Yue, S.Q. Zhang, M.J. Dong, Z.Y. Yin, Combustion charcteristics and kinetics of municipal sewage sludge, J. China Univ. Min. & Technol. 38 (2009) (5)741–744. [43] E.C. Achife, J.A. Ibemesi, Applicability of the Freundlich and Langmuir adsorption isotherms in the bleaching of rubber and melon seed oils, J Am Oil Chem Soc 66 (2) (1989) 247–252. [44] N.N. Nassar, A. Hassan, P. Pereira-Almao, Effect of surface acidity and basicity of aluminas on asphaltene adsorption and oxidation, J. Colloid Interface Sci. 360 (1) (2011) 233–238. [45] R.H.S. Winterton, Van der waals forces, Contemp. Phys. 11 (6) (1970) 559-574. [46] J.N. Israelachvili, Intermolecular and Surface Forces, Academic press, Bejing, 2011. [47] L. Bergstrom, A. Meurk, H. Arwin, D.J.Rowcliffe, Estimation of hamaker constants of ceramic materials from optical data using Lifshitz theory, J. Am. Ceram. Soc. 79 (2) (1996) 339–348. [48] E. Piccinini, S. Alberti, G.S. Longo, T. Berninger, J. Breu, J. Dostalek, O. Azzaroni, W.Knoll, Pushing the boundaries of interfacial sensitivity in graphene FET sensors: Polyelectrolyte multilayers strongly increase the Debye screening length, J. Phys. Chem. C 122 (18) (2018) 10181–10188. [49] Gilbert P U P A. The organic-mineral interface in biominerals, Rev. Mineral. Geochem. 59 (1) (2005) 157–185. [50] J.S. Buckley, Y.Liu, Some mechanisms of crude oil/brine/solid interactions, J. Petroleum Sci. Eng. 20 (3–4) (1998) 155–160. [51] M. Kleber, P. Sollins, R. Sutton, A conceptual model of organo-mineral interactions in soils: Self-assembly of organic molecular fragments into zonal structures on mineral surfaces, Biogeochemistry 85 (1) (2007) 9–24. [52] Yun, Bai, Effects of the N, O, and S heteroatoms on the adsorption and desorption of asphaltenes on silica surface: A molecular dynamics simulation, Fuel 240 (2019) 252–261. [53] Yangchao, Xia, Improving the adsorption of oily collector on the surface of low-rank coal during flotation using a cationic surfactant: An experimental and molecular dynamics simulation study, Fuel 235 (2019) 687–695. [54] Guozhong, Wu, Sorption and distribution of asphaltene, resin, aromatic and saturate fractions of heavy crude oil on quartz surface: Molecular dynamic simulation, Chemosphere 92 (11) (2013) 1465–1471. [55] J.J. Hou, J.Z. Du, H. Sui, L.Y.Sun, Surfactants enhanced heavy oil-solid separation from carbonate asphalt rocks-experiment and molecular dynamic simulation, Nanomaterials 11 (7) (2021) 1835. |