Chinese Journal of Chemical Engineering ›› 2025, Vol. 82 ›› Issue (6): 270-280.DOI: 10.1016/j.cjche.2025.01.015
Previous Articles Next Articles
Keyu Wang, Qiuchen Wang, Man Zhao, Yanzhi Sun, Junqing Pan
Received:2024-05-11
Revised:2024-12-26
Accepted:2025-01-17
Online:2025-03-19
Published:2025-08-19
Contact:
Man Zhao,E-mail:zhaom@buct.edu.cn;Junqing Pan,E-mail:jqpan@buct.edu.cn
Supported by:Keyu Wang, Qiuchen Wang, Man Zhao, Yanzhi Sun, Junqing Pan
通讯作者:
Man Zhao,E-mail:zhaom@buct.edu.cn;Junqing Pan,E-mail:jqpan@buct.edu.cn
基金资助:Keyu Wang, Qiuchen Wang, Man Zhao, Yanzhi Sun, Junqing Pan. Advancements in sodium production and slag recovery techniques: A comprehensive review[J]. Chinese Journal of Chemical Engineering, 2025, 82(6): 270-280.
Keyu Wang, Qiuchen Wang, Man Zhao, Yanzhi Sun, Junqing Pan. Advancements in sodium production and slag recovery techniques: A comprehensive review[J]. 中国化学工程学报, 2025, 82(6): 270-280.
Add to citation manager EndNote|Ris|BibTeX
URL: https://cjche.cip.com.cn/EN/10.1016/j.cjche.2025.01.015
| [1] J.H. Song, B.W. Xiao, Y.H. Lin, K. Xu, X.L. Li, Interphases in sodium-ion batteries, Adv. Energy Mater. 8 (17) (2018) 1703082. [2] X.L. Hao, M.H. Zhou, H.Q. Yu, Q.Q. Shen, L.C. Lei, Effect of sodium ion concentration on hydrogen production from sucrose by anaerobic hydrogen-producing granular sludge, Chin. J. Chem. Eng. 14 (4) (2006) 511-517. [3] S. Gurram, G. Srivastava, V. Badve, V. Nandre, S. Gundu, P. Doshi, Pyridine borane as alternative reducing agent to sodium cyanoborohydride for the PEGylation of L-asparaginase, Appl. Biochem. Biotechnol. 194 (2) (2022) 827-847. [4] W.C. Dawn, S. Palmtag, A multiphysics simulation suite for sodium cooled fast reactors, EPJ Web Conf. 247 (2021) 06019. [5] K.K. Rajan, A study on sodium - the fast breeder reactor coolant, IOP Conf. Ser.: Mater. Sci. Eng. 1045 (1) (2021) 012013. [6] N. Nakae, T. Baba, K. Kamimura, Basis of technical standard on fuel for sodium-cooled fast breeder reactor, J. Nucl. Sci. Technol. 48 (4) (2011) 524-531. [7] J. Bauer, G. Weber, Sodium chloride in preparative free-flow cell electrophoresis: recent developments, Electrophoresis 17 (3) (1996) 526-528. [8] X.G. Shi. Metal sodium market analysis, Inorg. Chem, (06) (2006) 5-7. [9] C.B. Tang, J.H. Wang, S.H. Yang, X.P. Zhang, S. Li, Y.Q. Lai, Z.L. Tian, S.M. Jin, Y.M. Chen, Efficient extraction and recovery of lithium from waste aluminum cryolite electrolyte, Resour. Conserv. Recycl. 197 (2023) 107070. [10] F. Xie, K.W. Dong, W. Wang, E. Asselin, Leaching of mercury from contaminated solid waste: a mini-review, miner process extr metall rev 41 (3) (2020) 187-197. [11] H.Y. Pang, R.F. Lu, T. Zhang, L. Li, Y.X. Chen, S.W. Tang, Chemical dehydration coupling multi-effect evaporation to treat waste sulfuric acid in titanium dioxide production process, Chin. J. Chem. Eng. 28 (4) (2020) 1162-1170. [12] A.H. Meng, Q.H. Li, J.Y. Jia, Y.G. Zhang, Effect of moisture on partitioning of heavy metals in incineration of municipal solid waste, Chin. J. Chem. Eng. 20 (5) (2012) 1008-1015. [13] F.A. Kozlov, V.V. Alekseev, Y.I. Zagorul’ko, G.P. Sergeev, L.G. Volchkov, P.S. Kozub, Y.P. Kovalev, T.A. Vorob’eva, A.N. Volov, The results of the development of technology for using sodium as coolant for fast-neutron reactors, Therm. Eng. 54 (12) (2007) 942-954. [14] F.Y. Bai, Molten salt electrolysis process for sodium production, J. Salt Chem. Ind., (01) (1996) 22-24+27. (in Chinese). [15] P. Fratzel, Sodium purification method, CN Pat., 1389585, 2003. [16] Y.Z. Wang, Y. Feng, Production consumption and development prospect of sodium metal, Chem. Ind. Times (04) (1995) 25-26. (in Chinese). [17] F.Y. Bai, S.R. Wen, New technology of sodium salt process, Inner Mong. Petrol. Ind. (02) (1997) 8-13. (in Chinese). [18] D.H. Chen, Review of patent technology for preparing sodium metal by electrochemical method, Chem. Enterp. Manag. (20) (2017) 174. (in Chinese). [19] M.J. Zhang, Z.X. Qiu, Principle of potential scanning method and its application in molten salt electrolysis, Non-Fer. Min. Metall. (01) (1988) 30-34. (in Chinese). [20] Z.Z. Chen, J.Q. Yang, G, Wen, Study on preparation of high purity sodium and sodium hydroxide by electrolytic melting of sodium chloride by β-Al2O3 diaphragm method, J. Hunan Univ., (02) (1984) 95-105. (in Chinese). [21] Y. Jiang, X.W. Yuan, Y.C. Hu, Research on preparation of metal sodium, Dongfang Electr. Rev. 27 (1) (2013) 1-3, 11. [22] T.L. Wen, β-Al2O3- a fast ionic conductor, J. Chin. Ce. Soc. (04) (1979) 380-387. (in Chinese). [23] Y.D. Hou, Experimental study on two-phase flow pressure drop characteristics of liquid sodium metal, J. Xian Jiatong Univ. (05) (1997) 110-114. (in Chinese). [24] Z.X. Liu, H. Zhang, Y.F. Wu, Simulation of flow field in 40 kA sodium electrolytic cell, Nonferrous Metals (09) (2012) 24-27. (in Chinese). [25] H.X. Yang, J.F. Qian, Recent development of aqueous sodium ion batteries and their key materials, J. Inorg. Mater. 28 (11) (2013) 1165-1171. [26] Z.M. Wang, Production and market prospect of sodium metal, Chem. Tech. Market (2) (1997) 8-9. (in Chinese). [27] L. Zhang, S.X. Wang, Application and production technology of sodium metal, J. Qinghai Norm. Univ. (Nat. Sci.) (04) (2006) 96-97. (in Chinese). [28] V.A. Demin, A.I. Kamenev, N.P. Zveryak, V.I. Zarembo, Determination of heavy metals and iodide by stripping voltammetry in sodium chloride on mercury-graphite electrodes, J. Anal. Chem. 65 (1) (2010) 87-90. [29] S. Szegedi, F. Divos, Determination of oxygen in rock samples by fast-neutron activation, J. Radioanal. Nucl. Chem. 81 (2) (1984) 317-322. [30] D.K. Banerjee, C.C. Budke, F.D. Miller, Spectrophotometric determination of traces of calcium in sodium. visible and ultraviolet methods using sodium naphthalhydroxamate, Anal. Chem. 33 (3) (1961) 418-421. [31] K.L. Qi, G. Wang, X.M. Wen, S.P. Sun, Y.T. Jia, The Determination of Hydrogen in Sodium by Vacuum Extraction, Chin. Nucl. Sci. Tec. R, (1) (1993) 668-676. (in Chinese). [32] M.A. Nettleton, The applications of unsteady, multi-dimensional studies of detonation waves to ram accelerators, Shock. Waves 10 (1) (2000) 9-22. [33] J.P. Peng, Experimental study on a new type of aluminum electrolytic cell with cathode structure, PhD Thesis, Northeastern University, Liaoning, 2009. (in Chinese). [34] P. Mandin, A.A. Aissa, H. Roustan, J. Hamburger, G. Picard, Two-phase electrolysis process: from the bubble to the electrochemical cell properties, Chem. Eng. Process. Process. Intensif. 47 (11) (2008) 1926-1932. [35] Z.X Liu, L.L. Wang, Y.F. Wu, Three-dimensional simulation of electric field in 40 kA diaphragm sodium electrolyzes, J. Inner Mong. Univ. Sci. Technol., 31(04) (2012) 323-327. (in Chinese). [36] H.G. Zhang, Analysis of multiphase flow in molten salt electrolyze, Master Thesis, Inner Mongolia University of Science & Technology, Inner Mongolia, 2007. (in Chinese). [37] J.Q. Pan, Q.C. Wang, K.Y. Wang, Y. Chen, Y.Z. Sun, Method for preparing metallic sodium and chloride, CN Pat., 117512702A, 2024. [38] J.Q. Pan, Q.C. Wang, K.Y. Wang K Y, Chen, Y.Z. Sun, Method and device for preparing metallic sodium by recovering sodium residue with composite electrolyte, CN Pat., 117468051A, 2024. [39] M. Sittig, Sodium: Its manufacture, properties and uses of sodium, Reinhold Pub. Corp., New York, 1957. [40] G.J. May, S.R. Tan, Recent progress in the development of beta-alumina for the sodium-sulphur battery, Electrochim. Acta 24 (7) (1979) 755-763. [41] C.W. Sun, Y.X. Cao, Electrochemical preparation of high purity sodium amalgam, Chem. Reagents (05) (1991) 312-314+305. [42] M. Doi, The manufacture of sodium by electrolysis in tekkosha Toyama plant, J. Min. Metall. Inst. Jpn. 84 (963) (1968) 982-984. [43] Preparation of sodium metal (Tekkosha process), Liaoning Chem. Ind. (04) (1973) 70. [44] T.R. Mahalingam, R. Geetha, A. Thiruvengadasami, C.K. Mathews, Determination of trace metals in sodium by electro-thermal atomic absorption spectrometry, Anal. Chim. Acta 142 (1982) 189-195. [45] H.J. Xie, D.F. Zheng, X. Luo X, Research progress of key materials for sodium-ion batteries, Zhejiang Chem. Ind., 54(12) (2023) 8-14. (in Chinese). [46] X.L. Zhang, S.L. Hu, Z.M. Deng, The temperature field of rare earth electrolyzer was studied by finite element method, Com. App. Chem., (06) (2006) 535-537. [47] G. Gao, F.H. Stott, J.L. Dawson, D.M. Farrell, Electrochemical Monitoring of High-Temperature Molten-Salt Corrosion, Oxid. Met., 33(1) (1990) 79-94. [48] J.Q. Yang, Z.Z. Chen, G.A. Wen, Study on preparation of Na by electrolytic melting of NaOH by β-Al2O3 diaphragm method, The inorganic salt industry, (01) (1982) 1-5. [49] G.J. Dang, High purity sodium metal was prepared by Na-β-Al2O3 ceramic diaphragm melting electrolysis, Master Thesis, Shanghai Institute of Technology, Shanghai, 2015. (in Chinese). [50] L.H. Guan, The preparation of sodium metal from electrolytic melting of NaOH by β-Al2O3 diaphragm method was identified, Inorganic Chem. Ind., (04) (1982) 44. [51] W.M. Husslage, T. Bakker, A.G.S. Steeghs, M.A. Reuter, R.H. Heerema, Flow of molten slag and iron at 1500 °C to 1600 °C through packed coke beds, Metall. Mater. Trans. B 36 (6) (2005) 765-776. [52] W.T. Wei, J.Q. Xu, W.H. Chen, L.W. Mi, J.J. Zhang, A review of sodium chloride-based electrolytes and materials for electrochemical energy technology, J. Mater. Chem. A 10 (6) (2022) 2637-2671. [53] M. Wang, Development of electrolytic device for preparing high purity sodium, Master Thesis, Shanghai Institute of Technology, Shanghai, 2015. (in Chinese). [54] W. Luo, M.E. Abbas, L.H. Zhu, W.Y. Zhou, K.J. Li, H.Q. Tang, S.S. Liu, W.Y. Li, A simple fluorescent probe for the determination of dissolved oxygen based on the catalytic activation of oxygen by iron(II) chelates, Anal. Chim. Acta 640 (1-2) (2009) 63-67. [55] C.A. Wang, R.J. Sun, L. Zhao, C.W. Wang, G.T. Hu, N. Zhao, D.F. Che, Experimental study on fouling and slagging behaviors during oxy-fuel combustion of high-sodium coal using a high-temperature drop-tube furnace, Int. J. Greenh. Gas Contr. 97 (2020) 103054. [56] C.A. Wang, L. Zhao, T. Han, W.F. Chen, Y. Yan, X. Jin, D.F. Che, Release and transformation behaviors of sodium, calcium, and iron during oxy-fuel combustion of Zhundong coals, Energy Fuels 32 (2) (2018) 1242-1254. [57] T.S. Qiu, H. Wu, Y.Z. Liang, Recovery of rare earth elements from molten salt electrolytic slag by sodium hydroxide roasting and hydrochloric acid leaching, J. China Univ. Min. Technol. (Engl. Ed.) 51(03) (2022) 475-482. [58] S.H. Han, Crystal sodium sulfate was recovered from waste residue containing sodium, China Resources Comprehensive Utilization (09) (1997) 14-15. (in Chinese). [59] X.J. Huang, Metal sodium slag recovery and treatment system, CN Pat., 2846436, 2006. [60] Z.X. Cui, Q.L. Suo, H. Zhang, Y.F. Zhang, W.B. Li, Vacuum distillation apparatus and process for continuously recovering metal sodium and calcium from sodium residue, CN Pat., 111363922B, 2023. [61] W. Liu, The utility model relates to a recycling treatment system for industrial metal sodium residue: CN Pat., 208562194U, 2019. [62] J.Q. Pan, Q.C. Wang, K.Y. Wang, Y. Chen, Y.Z. Sun, Process for the recovery of high purity metallic sodium and the safe treatment of high calcium content sodium slag, US Pat., 2023332270, 2023. [63] J.Q. Pan, Q.C. Wang, K.Y. Wang, Y. Chen, Y.Z. Sun, Method and apparatus for sodium slag recovery: US Pat., 2023332271, 2023. [64] J.Q. Pan, K.Y. Wang, Q.C. Wang, Y. Chen, Y.Z. Sun, The invention relates to a sodium residue leaching recovery method and a recovery system, CN Pat., 2024100984396, 2024. [65] Q. Hai, G.L. Tang, G.P. Li, The invention relates to a preparation process for extracting metallic sodium from sodium residue by melting replacement method: CN Pat., 109371250A, 2019. [66] J.Q. Pan, K.Y. Wang, Q.C. Wang, Y. Chen, Y.Z. Sun, Substitution process, method of separating metal sodium by sodium residue purification and double salt, CN Pat., 117265289A, 2023. [67] X.M. Xia, C.F. Du, S.E. Zhong, Y. Jiang, H. Yu, W.P. Sun, H.G. Pan, X.H. Rui, Y. Yu, Homogeneous Na deposition enabling high-energy Na-metal batteries, Adv. Funct. Mater. 32 (10) (2022) 2110280. [68] P. Pirayesh, E.Z. Jin, Y.J. Wang, Y. Zhao, Na metal anodes for liquid and solid-state Na batteries, Energy Environ. Sci. 17 (2) (2024) 442-496. [69] B. Hayman, J. Wedel-Heinen, P. Broendsted, Materials challenges in present and future wind energy, MRS Bull. 33 (4) (2008) 343-353. [70] X.C. Lu, G.G. Xia, J.P. Lemmon, Z.G. Yang, Advanced materials for sodium-beta alumina batteries: Status, challenges and perspectives, J. Power Sources 195 (9) (2010) 2431-2442. [71] Z.Y. Wen, Z.H. Gu, X.H. Xu, J.D. Cao, F.L. Zhang, Z.X. Lin, Research activities in Shanghai Institute of Ceramics, Chinese Academy of Sciences on the solid electrolytes for sodium sulfur batteries, J. Power Sources 184 (2) (2008) 641-645. [72] B. Dunn, H. Kamath, J.M. Tarascon, Electrical energy storage for the grid: a battery of choices, Science 334 (6058) (2011) 928-935. [73] D. Larcher, J.M. Tarascon, Towards greener and more sustainable batteries for electrical energy storage, Nat. Chem. 7 (1) (2015) 19-29. [74] Z.G. Yang, J.L. Zhang, M.C.W. Kintner-Meyer, X.C. Lu, D. Choi, J.P. Lemmon, J. Liu, Electrochemical energy storage for green grid, Chem. Rev. 111 (5) (2011) 3577-3613. [75] Z.Y. Wen, Y.Y. Hu, X.W. Wu, J.D. Han, Z.H. Gu, Main challenges for high performance NAS battery: materials and interfaces, Adv. Funct. Mater. 23 (8) (2013) 1005-1018. [76] X.C. Lu, B.W. Kirby, W. Xu, G.S. Li, J.Y. Kim, J.P. Lemmon, V.L. Sprenkle, Z.G. Yang, Advanced intermediate-temperature Na-S battery, Energy Environ. Sci. 6 (1) (2013) 299-306. [77] J.J. Kim, K. Yoon, I. Park, K. Kang, Progress in the development of sodium-ion solid electrolytes, Small Meth. 1 (10) (2017) 1700219. [78] J.W. Fergus, Ion transport in sodium ion conducting solid electrolytes, Solid State Ion. 227 (2012) 102-112. [79] A. Fdz De Anastro, N. Lago, C. Berlanga, M. Galceran, M. Hilder, M. Forsyth, D. Mecerreyes, Poly(ionic liquid) iongel membranes for all solid-state rechargeable sodium battery, J. Membr. Sci. 582 (2019) 435-441. [80] M. Forsyth, L. Porcarelli, X.E. Wang, N. Goujon, D. Mecerreyes, Innovative electrolytes based on ionic liquids and polymers for next-generation solid-state batteries, Acc. Chem. Res. 52 (3) (2019) 686-694. [81] J. Zhu, R. Li, W.L. Niu, Y.J. Wu, X.L. Gou, Fast hydrogen generation from NaBH4 hydrolysis catalyzed by carbon aerogels supported cobalt nanoparticles, Int. J. Hydrog. Energy 38 (25) (2013) 10864-10870. [82] I. Milanovic, N. Biliskov, Sodium amidoborane: a dead end for solid-state hydrogen storage or a gateway to advanced energy systems? Int. J. Hydrog. Energy 59 (2024) 282-298. [83] S. Asako, H. Nakajima, K. Takai, Organosodium compounds for catalytic cross-coupling, Nat. Catal. 2 (2019) 297-303. [84] W. Chen, L.Z. Ouyang, J.W. Liu, X.D. Yao, H. Wang, Z.W. Liu, M. Zhu, Hydrolysis and regeneration of sodium borohydride (NaBH4)-A combination of hydrogen production and storage, J. Power Sources 359 (2017) 400-407. [85] H. Zhong, L. Ouyang, M.Q. Zeng, J.W. Liu, H. Wang, H.Y. Shao, M. Felderhoff, M. Zhu, Realizing facile regeneration of spent NaBH4 with Mg-Al alloy, J. Mater. Chem. A 7 (17) (2019) 10723-10728. [86] C.G. Lang, Y. Jia, J.W. Liu, H. Wang, L.Z. Ouyang, M. Zhu, X.D. Yao, NaBH4 regeneration from NaBO2 by high-energy ball milling and its plausible mechanism, Int. J. Hydrog. Energy 42 (18) (2017) 13127-13135. [87] L.Z. Ouyang, W. Chen, J.W. Liu, M. Felderhoff, H. Wang, M. Zhu, Enhancing the regeneration process of consumed NaBH4 for hydrogen storage, Adv. Energy Mater. 7 (19) (2017) 1700299. [88] Z. Tashrifi, M. Mohammadi-Khanaposhtani, B. Larijani, H. Hamedifar, S. Ansari, M. Mahdavi, Vinylazides: versatile synthons and magical precursors for the construction of N-heterocycles, Mol. Divers. 25 (4) (2021) 2533-2570. [89] Y. Goriya, C.V. Ramana, Synthesis of pseudo-indoxyl derivatives via sequential Cu-catalyzed S(N)Ar and Smalley cyclization, Chem. Commun. 49 (57) (2013) 6376-6378. [90] J.T. Markiewicz, O. Wiest, P. Helquist, Synthesis of primary aryl amines through a copper-assisted aromatic substitution reaction with sodium azide, J. Org. Chem. 75 (14) (2010) 4887-4890. [91] L.J. Gu, C. Jin, Copper-catalyzed aerobic oxidative cleavage of C-C bonds in epoxides leading to aryl nitriles and aryl aldehydes, Chem. Commun. 51 (30) (2015) 6572-6575. [92] K. Rajendar, R. Kant, T. Narender, Molecular iodine-mediated domino reaction for the synthesis of benzamides, 2, 2-diazidobenzofuran-3(2H)-ones and benzoxazolones, Adv. Synth. Catal. 355 (18) (2013) 3591-3596. [93] E.A. Betterton, Environmental fate of sodium azide derived from automobile airbags, Crit. Rev. Environ. Sci. Technol. 33 (4) (2003) 423-458. [94] H.C. Lichstein, Studies of the effect of sodium azide on microbic growth and respiration: III. the effect of sodium azide on the gas metabolism of B. subtilis and P. aeruginosa and the influence of pyocyanine on the gas exchange of a pyocyanine-free strain of P. aeruginosa in the presence of sodium azide, J. Bacteriol. 47 (3) (1944) 239-251. [95] F. Zhao, Z.W. Bian, H.X. Zhao, D.S. Chen, Z.F. Yuan, Y.L. Zhen, L.N. Wang, T. Qi, Wettability and corrosion behavior between alkaline slag from sodium smelting of vanadium-titanium magnetite and refractory substrates, J. Iron Steel Res. Int. 31 (6) (2024) 1399-1410. [96] D.J. Sun, Environmental protection process of rare earth metal smelting slag: CN Pat., 201510244696.7, 2015. [97] G. Locatelli, M. Mancini, N. Todeschini, Generation IV nuclear reactors: Current status and future prospects, Energy Policy 61 (2013) 1503-1520. [98] G. Vaidyanathan, Decay heat removal in sodium cooled fast Reactors-An overview, Ann. Nucl. Energy 205 (2024) 110554. [99] Z.X. Tian, J.R. Zhang, C.L. Wang, K.L. Guo, Y. Liu, D.L. Zhang, W.X. Tian, S.Z. Qiu, G.H. Su, Experimental evaluation on heat transfer limits of sodium heat pipe with screen mesh for nuclear reactor system, Appl. Therm. Eng. 209 (2022) 118296. [100] T. Abram, S. Ion, Generation-IV nuclear power: a review of the state of the science, Energy Policy 36 (12) (2008) 4323-4330. [101] K. Aoto, N. Uto, Y. Sakamoto, T. Ito, M. Toda, S. Kotake, Design study and R&D progress on Japan sodium-cooled fast reactor, J. Nucl. Sci. Technol. 48 (4) (2011) 463-471. |
| No related articles found! |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||
京公网安备 11010102001993号 
