[1] X.X. Zhang, Z.L. Cui, Y.L. Li, H.Y. Xiao, Y. Li, J. Tang, S. Xiao, Abatement of SF6 in the presence of NH3 by dielectric barrier discharge plasma, J. Hazard. Mater. 360 (2018) 341-348. [2] X.X. Zhang, H.Y. Xiao, J. Tang, Z.L. Cui, Y. Zhang, Recent advances in decomposition of the most potent greenhouse gas SF6, crit rev environ sci technol 47 (18) (2017) 1763-1782. [3] S.Y. Shi, Y. Li, Z.L. Cui, Y.X. Yan, X.X. Zhang, J. Tang, S. Xiao, Recent advances in degradation of the most potent industrial greenhouse gas sulfur hexafluoride, Chem. Eng. J. 470 (2023) 144166. [4] X.X. Zhang, S. Xiao, Y.F. Han, Y. Cressault, Experimental studies on power frequency breakdown voltage of CF3I/N2 mixed gas under different electric fields, 108 (9) (2016) 092901. [5] X.X. Zhang, S. Xiao, Y.F. Han, Q.W. Dai, Analysis of the feasibility of CF3I/CO2 used in C-GIS by partial discharge inception voltages in positive half cycle and breakdown voltages, IEEE Trans. Dielectr. Electr. Insul. 22 (6) (2015) 3234-3243. [6] C. Ding, X. Hu, Z.J. Gao, Study on relative electrical strength of SF6 substitute gas based on density functional theory, IEEE Access 10 (2022) 75395-75403. [7] S.S. Tian, X.X. Zhang, Y. Cressault, J.T. Hu, B. Wang, S. Xiao, Y. Li, N. Kabbaj, Research status of replacement gases for SF6 in power industry, 10 (5) (2020) 050702. [8] X.X. Zhang, G.Z. Zhang, Y.Q. Wu, S.J. Song, Synergistic treatment of SF6 by dielectric barrier discharge/γ-Al2O3 catalysis, AIP Adv. 8 (12) (2018) 125109. [9] J. Owens, A. Xiao, J. Bonk, M. DeLorme, A. Zhang, Recent development of two alternative gases to SF6 for high voltage electrical power applications, Energies 14 (16) (2021) 5051. [10] Y. Li, X.X. Zhang, F.C. Ye, D.C. Chen, S.S. Tian, Z.L. Cui, Influence regularity of O2 on dielectric and decomposition properties of C4F7N-CO2-O2 gas mixture for medium-voltage equipment, High Volt. 5 (3) (2020) 256-263. [11] Y. Kieffel, T. Irwin, P. Ponchon, J. Owens, Green gas to replace SF6 in electrical grids, IEEE Power Energy Mag. 14 (2) (2016) 32-39. [12] M.Y. Zhao, D. Han, Z.R. Zhou, G.Q. Zhang, Experimental and theoretical analysis on decomposition and by-product formation process of (CF3)2CFCN mixture, 9 (10) (2019) 105204. [13] P.G. Simmonds, M. Rigby, A.J. Manning, S. Park, K.M. Stanley, A. McCulloch, S. Henne, F. Graziosi, M. Maione, J. Arduini, S. Reimann, M.K. Vollmer, J. Muhle, S. O’Doherty, D. Young, P.B. Krummel, P.J. Fraser, R.F. Weiss, P.K. Salameh, C.M. Harth, M.K. Park, H. Park, T. Arnold, C. Rennick, L.P. Steele, B. Mitrevski, R.H.J. Wang, R.G. Prinn, The increasing atmospheric burden of the greenhouse gas sulfur hexafluoride (SF6), Atmos. Chem. Phys. 20 (12) (2020) 7271-7290. [14] B.K. Sovacool, S. Griffiths, J. Kim, M. Bazilian, Climate change and industrial F-gases: a critical and systematic review of developments, sociotechnical systems and policy options for reducing synthetic greenhouse gas emissions, Renew. Sustain. Energy Rev. 141 (2021) 110759. [15] J. Hanoteau, D. Talbot, Impacts of the Quebec carbon emissions trading scheme on plant-level performance and employment, carbon Manag. 10 (3) (2019) 287-298. [16] N.K. Park, H.G. Park, T.J. Lee, W.C. Chang, W.T. Kwon, Hydrolysis and oxidation on supported phosphate catalyst for decomposition of SF6, Catal. Today 185 (1) (2012) 247-252. [17] Y. Yamada, H. Tamura, D. Takeda, Photochemical reaction of sulfur hexafluoride with water in low-temperature xenon matrices, J. Chem. Phys. 134 (10) (2011) 104302. [18] M. Govindan, R. Adam Gopal, I.S. Moon, Electrochemical sequential reduction and oxidation facilitates the continual ambient temperature degradation of SF6 to nontoxic gaseous compounds, Chem. Eng. J. 382 (2020) 122881. [19] Y. Vadikkeettil, Y. Subramaniam, R. Murugan, P.V. Ananthapadmanabhan, J. Mostaghimi, L. Pershin, C. Batiot-Dupeyrat, Y. Kobayashi, Plasma assisted decomposition and reforming of greenhouse gases: a review of current status and emerging trends, Renew. Sustain. Energy Rev. 161 (2022) 112343. [20] D. Gupta, Brief review of electron collision studies of molecules relevant to plasma, Appl. Sci. Converg. Technol. 29 (6) (2020) 125-132. [21] D. Kashiwagi, A. Takai, T. Takubo, K. Nagaoka, T. Inoue, Y. Takita, Metal phosphate catalysts effective for degradation of sulfur hexafluoride, Ind. Eng. Chem. Res. 48 (2) (2009) 632-640. [22] D. Kashiwagi, A. Takai, T. Takubo, H. Yamada, T. Inoue, K. Nagaoka, Y. Takita, Catalytic activity of rare earth phosphates for SF6 decomposition and promotion effects of rare earths added into AlPO4, J. Colloid Interface Sci. 332 (1) (2009) 136-144. [23] L. Huang, D.H. Gu, L.Y. Yang, L.Y. Xia, R.X. Zhang, H.Q. Hou, Photoreductive degradation of sulfur hexafluoride in the presence of styrene, J. Environ. Sci. 20 (2) (2008) 183-188. [24] X.X. Song, X.G. Liu, Z.L. Ye, J.C. He, R.X. Zhang, H.Q. Hou, Photodegradation of SF6 on polyisoprene surface: implication on elimination of toxic byproducts, J. Hazard. Mater. 168 (1) (2009) 493-500. [25] S. Bouvet, B. Pegot, S. Sengmany, E. Le Gall, E. Leonel, A.M. Goncalves, E. Magnier, Controlled decomposition of SF6 by electrochemical reduction, Beilstein J. Org. Chem. 16 (2020) 2948-2953. [26] X.X. Zhang, Z.L. Cui, Y.L. Li, H.Y. Xiao, Y. Li, J. Tang, Study on degradation of SF6 in the presence of H2O and O2 using dielectric barrier discharge, IEEE Access 6 (2018) 72748-72756. [27] A. Parthiban, A.A.R. Gopal, P. Siwayanan, K.W. Chew, Disposal methods, health effects and emission regulations for sulfur hexafluoride and its by-products, J. Hazard. Mater. 417 (2021) 126107. [28] H.M. Lee, M.B. Chang, K.Y. Wu, Abatement of sulfur hexafluoride emissions from the semiconductor manufacturing process by atmospheric-pressure plasmas, J. Air Waste Manag. Assoc. 54 (8) (2004) 960-970. [29] X.B. Zhu, X. Gao, R. Qin, Y.X. Zeng, R.Y. Qu, C.H. Zheng, X. Tu, Plasma-catalytic removal of formaldehyde over Cu-Ce catalysts in a dielectric barrier discharge reactor, Appl. Catal. B Environ. 170 (2015) 293-300. [30] Z.L. Cui, X.X. Zhang, Y. Tian, Y.L. Li, J. Tang, Effects of glass beads packing on SF6 abatement by packed bed plasma, Plasma Chem. Plasma Process. 40 (1) (2020) 43-59. [31] Y. Tian, X.X. Zhang, B.W. Tang, Z.L. Cui, G.Z. Zhang, Z.W. Chen, H. Wang, SF6 abatement in a packed bed plasma reactor: study towards the effect of O2 concentration, RSC Adv. 9 (60) (2019) 34827-34836. [32] Y. Tian, X.X. Zhang, Y.F. Wang, Z.L. Cui, J. tang, SF6 abatement in a packed bed plasma reactor: Role of zirconia size and optimization using RSM, J. Ind. Eng. Chem. 94 (2021) 205-216. [33] Z. Cui, C. Zhou, A. Jafarzadeh, S. Meng, Y. Yi, Y. Wang, X. Zhang, Y. Hao, L. Li, A. Bogaerts, SF6 catalytic degradation in a gamma-Al2O3 packed bed plasma system: A combined experimental and theoretical study, High Voltage 12(2022) 1-11. [34] A. Ali, U. Garg, K.U. Khan, Y. Azim, Removal of organic and inorganic pollutants using CSFe3O4@CeO2 nanocatalyst via adsorption-reduction catalysis: a focused analysis on methylene blue, J. Polym. Environ. 30 (10) (2022) 4435-4451. [35] H. Ma, C.C. Yuan, X.M. Wang, H.J. Wang, Y.P. Long, Y.Q. Chen, Q. Wang, Y.Q. Cong, Y. Zhang, Deposition of CeO2 on TiO2 nanorods electrode by dielectric barrier discharge plasma to enhance the photoelectrochemical performance in high chloride salt system, Sep. Purif. Technol. 276 (2021) 119252. [36] B.F. Wang, X.F. Li, Y.H. Sun, H.L. Xiao, M.L. Fu, S.H. Li, H. Liang, Z.W. Qiao, D.Q. Ye, Unravelling the correlation of dielectric barrier discharge power and performance of Pt/CeO2 catalysts for toluene oxidation, Catal. Sci. Technol. 13 (2) (2023) 389-399. [37] A.J. Yang, W.J. Li, J.F. Chu, D.W. Wang, H. Yuan, J.G. Zhu, X.H. Wang, M.Z. Rong, Enhanced sensing of sulfur hexafluoride decomposition components based on noble-metal-functionalized cerium oxide, Mater. Des. 187 (2020) 108391. [38] P. Li, B.L. Yu, J. Li, X.L. Yao, Y.C. Zhao, Y.D. Li, Improved activity and stability of Ni-Ce0.8Sm0.2O1.9 anode for solid oxide fuel cells fed with methanol through addition of molybdenum, J. Power Sources 320 (2016) 251-256. [39] M.Y. Xia, W.Y. Ding, C.Y. Shen, Z.T. Zhang, C.J. Liu, CeO2-enhanced CO2 decomposition via frosted dielectric barrier discharge plasma, Ind. Eng. Chem. Res. 61 (29) (2022) 10455-10460. [40] R.P. Ye, Q.H. Li, W.B. Gong, T.T. Wang, J.J. Razink, L. Lin, Y.Y. Qin, Z.F. Zhou, H. Adidharma, J.K. Tang, A.G. Russell, M.H. Fan, Y.G. Yao, High-performance of nanostructured Ni/CeO2 catalyst on CO2 methanation, Appl. Catal. B Environ. 268 (2020) 118474. [41] R.C. Rao, Y.H. Huang, Q. Ling, C.M. Hu, X.Z. Dong, J. Xiang, Q.H. Zhou, S. Fang, Y.H. Hu, Y.N. Zhang, Q. Tang, A facile pyrolysis synthesis of Ni doped Ce2O3@CeO2/CN composites for adsorption removal of Congo red: Activation of carbon nitride structure, Sep. Purif. Technol. 305 (2023) 122505. [42] A. Jha, D.W. Jeong, Y.L. Lee, W.J. Jang, J.O. Shim, K.W. Jeon, C.V. Rode, H.S. Roh, Chromium free high temperature water-gas shift catalyst for the production of hydrogen from waste derived synthesis gas, Appl. Catal. A Gen. 522 (2016) 21-31. [43] T.S. Cam, S.O. Omarov, M.I. Chebanenko, A.S. Sklyarova, V.N. Nevedomskiy, V.I. Popkov, One step closer to the low-temperature CO oxidation over non-noble CuO/CeO2 nanocatalyst: The effect of CuO loading, J. Environ. Chem. Eng. 9 (4) (2021) 105373. [44] M.H. Liu, X.D. Wu, S. Liu, Y.X. Gao, Z. Chen, Y. Ma, R. Ran, D. Weng, Study of Ag/CeO2 catalysts for naphthalene oxidation: Balancing the oxygen availability and oxygen regeneration capacity, Appl. Catal. B Environ. 219 (2017) 231-240. [45] T. Jomjaree, P. Sintuya, A. Srifa, W. Koo-amornpattana, S. Kiatphuengporn, S. Assabumrungrat, M. Sudoh, R. Watanabe, C. Fukuhara, S. Ratchahat, Catalytic performance of Ni catalysts supported on CeO2 with different morphologies for low-temperature CO2 methanation, Catal. Today 375 (2021) 234-244. [46] Q.Q. Tan, Z.S. Shi, D.F. Wu, CO2 hydrogenation to methanol over a highly active Cu-Ni/CeO2-nanotube catalyst, Ind. Eng. Chem. Res. 57 (31) (2018) 10148-10158. [47] Y.Z. Wang, Y. Zhao, S.S. Zhu, J.C. Lu, S.F. He, H.H. Lu, D. Song, Y.M. Luo, Insight into the effect of CeO2 morphology on catalytic performance for steam reforming of glycerol, Fuel 334 (2023) 126587. [48] S. Chen, C.L. Pei, J.L. Gong, Insights into interface engineering in steam reforming reactions for hydrogen production, Energy Environ. Sci. 12 (12) (2019) 3473-3495. [49] Q.H. Gong, Y.J. Li, H. Huang, J. Zhang, T.T. Gao, G.W. Zhou, Shape-controlled synthesis of Ni-CeO2@PANI nanocomposites and their synergetic effects on supercapacitors, Chem. Eng. J. 344 (2018) 290-298. [50] W.J. Li, C.P. Niu, J.F. Chu, D.W. Wang, P.L. Lv, H. Yuan, A.J. Yang, X.H. Wang, Y.J. Li, M.Z. Rong, DFT+U study of sulfur hexafluoride decomposition components adsorbed on ceria (110) surface, Sens. Actuat. A Phys. 298 (2019) 111590. [51] Z.S. Lu, C. Muller, Z.X. Yang, K. Hermansson, J. Kullgren, SOx on ceria from adsorbed SO2, J. Chem. Phys. 134 (18) (2011) 184703. |