1 Lai, H.J., Lin, M.C.C., Yang, M.H., Li, A.K., “Synthesis of carbon nanotubes using polycyclic aromatic hydrocarbons as carbon sources in an arc discharge”, Mater. Sci. Eng. C, 16, 23-26(2001). 2 Setlur, A.A., Dai, J.Y., lauerhass, J.M., Chang, R.P.H., “Formation of filled carbon nanotubes and nanoparticles using polycyclic aromatic hydrocarbon molecules”, Carbon, 36, 721-723(1998). 3 Dai, Y., Lauerhaas, J.M., Setlur, A.A., Chang, R.P.H., “Synthesis of carbon-encapsulated nanowires using policyclic aromatic hydrocarbon precursors”, Chem. Phys. Lett., 258, 547-553(1996). 4 Wang, H., Frenklach, M., “A detailed kinetic modeling study of aromatics formation in laminar premixed acetylene and ethylene flames”, Combust. Flame, 110, 173-221(1997). 5 Appel, J., Bockhorn, H., Frenklach, M., “Kinetic modeling of soot formation with detailed chemistry and physics:Laminar premixed flames of C 2 hydrocarbons”, Combust. Flame, 121, 122-136(2000). 6 Charles, W., Bauschlicher, Jr., Ricca, A., “Mechanisms for polycyclic aromatic hydrocarbon(PAH) growth”, Chem. Phys. Lett., 326, 283-287(2000). 7 Marinov, N.M., Pitz, W.J., Westbrook, C.K., Vincitore, A.M., Castaldi, M.J., Senkan, S.M., Melius, C.F., “Aromatic and polycyclic aromatic hydrocarbon formation in a laminar premixed n-butane flame”, Combust. Flame, 114, 192-213(1998). 8 Tian, Y.J., Hu, Z., Yang, Y., Wang, X.Z., Chen, X., Wu, Q., Ji, W.J., Chen, Y., “In situ TA-MS study of the six-membered-ring-based growth of carbon nanotubes with benzene precursor”, J. Am. Chem. Soc., 126, 1180-1183(2004). 9 Tian, Y.J., Hu, Z., Yang, Y., Chen, X., Ji, W.J., Chen, Y., “Thermal analysis-mass spectroscopy coupling as a powerful technique to study the growth of carbon nanotubes from benzene”, Chem. Phys. Lett., 388, 259-262(2004). 10 Wang, B.J., Wei, X.Y., Xie, K.C., “Study on reaction of N-methyl-2-pyrrolidinone with carbon disulfide using density functional theory”, J. Chem. Ind. Eng.(China), 55, 569-574(2004).(in Chinese) 11 Zheng, C.G., Liu, J., Liu, Z.H., Xu, M.H., Liu, Y.H., “Kinetic mechanism studies on reactions of mercury and oxidizing species in coal combustion”, Fuel, 84, 1215-1220(2005). 12 Zhang, J.L., Wu, C.J., Li, W., Wang, Y.P., Cao, H., “DFT and MM calculation:The performance mechanism of pour point depressants study”, Fuel, 83, 315-326(2004). 13 Rozanska, X., van Santer, R.A., Hutschka, F., “A DFT study of isomerization and transalkylation reactions of aromatics species catalyzed by acidic zeolites”, J. Catal., 202, 141-155(2004). 14 Rozanska, X., Saintigny, X., van Santer, R.A., Hutschka, F., “A DFT study of the cracking reaction of thiophene activated by small zeolitic clusters”, J. Catal., 200, 79-90(2001). 15 Violi, A., Sarofim, A.F., “Quantum mechanical study of molecular weight growth process by combination of aromatic molecules”, Combust. Flame, 126, 1506-1515(2001). 16 Stewart, J.J.P., MOPAC 7.0, Quantum Chemistry Program Exchange, University of Indiana, Bloomington, IN, USA. 17 CS ChemOffice, Cambridge Science Computing Inc., Suite 61, 875 Massachusetts Avenue, Cambridge, MA02139, USA. 18 Dean, J.A., Lange’s Handbook of Chemistry, 2nd edition, Science Press, Beijing(2003). 19 Hu, Z., Yang, Y., Tian, Y.J., Lü, Y.N., Wang, X.Z., Chen, Y., “High-yield production of quasi-aligned carbon nanotubes by catalytic decomposition of benzene”, Nanotechnology, 14, 733-737(2003). |