Chinese Journal of Chemical Engineering ›› 2025, Vol. 86 ›› Issue (10): 233-242.DOI: 10.1016/j.cjche.2025.06.015
Previous Articles Next Articles
Jingnan Wang1, Xi Wang2, Jiannian Yao1,3
Received:2025-03-31
Revised:2025-05-12
Accepted:2025-06-11
Online:2025-08-06
Published:2025-10-28
Contact:
Jingnan Wang,E-mail:jingnanwang@fzu.edu.cn;Xi Wang,E-mail:xiwang@bjtu.edu.cn;Jiannian Yao,E-mail:jnyao@iccas.ac.cn
Supported by:Jingnan Wang1, Xi Wang2, Jiannian Yao1,3
通讯作者:
Jingnan Wang,E-mail:jingnanwang@fzu.edu.cn;Xi Wang,E-mail:xiwang@bjtu.edu.cn;Jiannian Yao,E-mail:jnyao@iccas.ac.cn
基金资助:Jingnan Wang, Xi Wang, Jiannian Yao. Atom-realm effect for the design of dual-atom catalysts and reaction mechanisms[J]. Chinese Journal of Chemical Engineering, 2025, 86(10): 233-242.
Jingnan Wang, Xi Wang, Jiannian Yao. Atom-realm effect for the design of dual-atom catalysts and reaction mechanisms[J]. 中国化学工程学报, 2025, 86(10): 233-242.
Add to citation manager EndNote|Ris|BibTeX
URL: https://cjche.cip.com.cn/EN/10.1016/j.cjche.2025.06.015
| [1] T.R. Wang, J.Y. Hu, R.H. Ouyang, Y.T. Wang, Y. Huang, S.L. Hu, W.X. Li, Nature of metal-support interaction for metal catalysts on oxide supports, Science 386 (6724) (2024) 915-920. [2] J. Masa, C. Andronescu, W. Schuhmann, Electrocatalysis as the nexus for sustainable renewable energy: the gordian knot of activity, stability, and selectivity, Angew. Chem. Int. Ed 59 (36) (2020) 15298-15312. [3] Y.B. Shi, H. Li, X.P. Liu, X.Y. Zhang, G.M. Zhan, J.D. Cheng, J.X. Wang, C.L. Mao, L.Z. Zhang, Green energy-driven ammonia production for sustainable development goals, Chem 10 (9) (2024) 2636-2650. [4] Z. Huang, L. Zhu, A. Li, Z. Gao, Renewable synthetic fuel: turning carbon dioxide back into fuel, Front. Energy 16 (2) (2022) 145-149. [5] S.J. Yang, X.H. Liu, S.S. Li, W.J. Yuan, L.N. Yang, T. Wang, H.Q. Zheng, R. Cao, W. Zhang, The mechanism of water oxidation using transition metal-based heterogeneous electrocatalysts, Chem. Soc. Rev. 53 (11) (2024) 5593-5625. [6] L.C. Liu, A. Corma, Metal catalysts for heterogeneous catalysis: from single atoms to nanoclusters and nanoparticles, Chem. Rev. 118 (10) (2018) 4981-5079. [7] C.Y. Dong, Y.L. Li, D.Y. Cheng, M.T. Zhang, J.J. Liu, Y.G. Wang, D.Q. Xiao, D. Ma, Supported metal clusters: fabrication and application in heterogeneous catalysis, ACS Catal. 10 (19) (2020) 11011-11045. [8] L.C. Liu, A. Corma, Bimetallic sites for catalysis: from binuclear metal sites to bimetallic nanoclusters and nanoparticles, Chem. Rev. 123 (8) (2023) 4855-4933. [9] S. Nitopi, E. Bertheussen, S.B. Scott, X.Y. Liu, A.K. Engstfeld, S. Horch, B. Seger, I.E.L. Stephens, K.R. Chan, C. Hahn, J.K. Noerskov, T.F. Jaramillo, I. Chorkendorff, Progress and perspectives of electrochemical CO2 reduction on copper in aqueous electrolyte, Chem. Rev. 119 (12) (2019) 7610-7672. [10] S. Jin, Z.M. Hao, K. Zhang, Z.H. Yan, J. Chen, Advances and challenges for the electrochemical reduction of CO2 to CO: from fundamentals to industrialization, Angew. Chem. Int. Ed 60 (38) (2021) 20627-20648. [11] Y.J. Yang, X.Z. Liu, Z.A. Zhu, Y.T. Zhong, Y. Bando, D. Golberg, J.N. Yao, X. Wang, The role of geometric sites in 2D materials for energy storage, Joule 2 (6) (2018) 1075-1094. [12] F. Lu, D. Yi, S.J. Liu, F. Zhan, B. Zhou, L. Gu, D. Golberg, X. Wang, J.N. Yao, Engineering platinum-oxygen dual catalytic sites via charge transfer towards highly efficient hydrogen evolution, Angew. Chem. Int. Ed 59 (40) (2020) 17712-17718. [13] Z.Q. Zhou, F. Yu, J. Ma, Nanoconfinement engineering for enchanced adsorptionof carbon materials, metal-organic frameworks, mesoporous silica, MXenes and porous organic polymers: a review, Environ. Chem. Lett. 20 (1) (2022) 563-595. [14] A.M. Wagner, J.M. Knipe, G. Orive, N.A. Peppas, Quantum dots in biomedical applications, Acta Biomater. 94 (2019) 44-63. [15] X. Fan, D.H. Li, Y.X. Shu, Y.M. Feng, F.X. Li, Confinement effect and application in catalytic oxidation-reduction reaction of confined single-atom catalysts, ACS Catal. 14 (17) (2024) 12991-13014. [16] X.K. Liu, C.C. Ao, X.Y. Shen, L. Wang, S.C. Wang, L.L. Cao, W. Zhang, J.J. Dong, J. Bao, T. Ding, L.D. Zhang, T. Yao, Dynamic surface reconstruction of single-atom bimetallic alloy under operando electrochemical conditions, Nano Lett. 20 (11) (2020) 8319-8325. [17] M.Q. Zeng, J.X. Liu, L. Zhou, R.G. Mendes, Y.Q. Dong, M.Y. Zhang, Z.H. Cui, Z.H. Cai, Z. Zhang, D.M. Zhu, T.Y. Yang, X.L. Li, J.Q. Wang, L. Zhao, G.X. Chen, H. Jiang, M.H. Rummeli, H. Zhou, L. Fu, Bandgap tuning of two-dimensional materials by sphere diameter engineering, Nat. Mater. 19 (5) (2020) 528-533. [18] C.L. Pei, S. Chen, D.L. Fu, Z.J. Zhao, J.L. Gong, Structured catalysts and catalytic processes: transport and reaction perspectives, Chem. Rev. 124 (6) (2024) 2955-3012. [19] X.C. Du, J.W. Huang, J.J. Zhang, Y.C. Yan, C.Y. Wu, Y. Hu, C.Y. Yan, T.Y. Lei, W. Chen, C. Fan, J. Xiong, Modulating electronic structures of inorganic nanomaterials for efficient electrocatalytic water splitting, Angew. Chem. Int. Ed 58 (14) (2019) 4484-4502. [20] X.X. Gong, S.G. Louie, W.H. Duan, Y. Xu, Generalizing deep learning electronic structure calculation to the plane-wave basis, Nat. Comput. Sci. 4 (10) (2024) 752-760. [21] Y.X. Zhou, Y.B. Yao, R. Zhao, X.X. Wang, Z.Z. Fu, D.W. Wang, H.Z. Wang, L. Zhao, W. Ni, Z.Y. Yang, Y.M. Yan, Stabilization of Cu+ via strong electronic interaction for selective and stable CO2 electroreduction, Angew. Chem. Int. Ed 61 (31) (2022) e202205832. [22] Liu Q, Wei Y, Xu L, et al. Interpretable machine learning-assisted high-throughput screening of highly active nitrogen fixation dual-atom catalysts, AICHE J., 71(8) (2025) e18866. [23] S. Fatayer, F. Albrecht, Y.L. Zhang, D. Urbonas, D. Pena, N. Moll, L. Gross, Molecular structure elucidation with charge-state control, Science 365 (6449) (2019) 142-145. [24] J.T. Li, Oxygen evolution reaction in energy conversion and storage: design strategies under and beyond the energy scaling relationship, Nanomicro Lett. 14 (1) (2022) 112. [25] H.C. Yang, P.F. Duan, Z.C. Zhuang, Y.W. Luo, J. Shen, Y.L. Xiong, X.W. Liu, D.S. Wang, Understanding the dynamic evolution of active sites among single atoms, clusters, and nanoparticles, Adv. Mater. 37 (7) (2025) e2415265. [26] Y. Hui, L. Wang, F.S. Xiao, Catalysis enhanced by catalyst wettability, ACS Nano 19 (8) (2025) 7617-7633. [27] T.X. Huang, X. Cong, S.S. Wu, J.B. Wu, Y.F. Bao, M.F. Cao, L.W. Wu, M.L. Lin, X. Wang, P.H. Tan, B. Ren, Visualizing the structural evolution of individual active sites in MoS2 during electrocatalytic hydrogen evolution reaction, Nat. Catal. 7 (6) (2024) 646-654. [28] A. Zhang, R. He, H.P. Li, Y.J. Chen, T.Y. Kong, K. Li, H.X. Ju, J.F. Zhu, W.G. Zhu, J. Zeng, Nickel doping in atomically thin tin disulfide nanosheets enables highly efficient CO2 reduction, Angew. Chem. Int. Ed 57 (34) (2018) 10954-10958. [29] G.H. Cao, J.J. Liang, Z.L. Guo, K.N. Yang, G. Wang, H.L. Wang, X.H. Wan, Z.Y. Li, Y.J. Bai, Y.L. Zhang, J.L. Liu, Y.P. Feng, Z.Y. Zheng, C. Lu, G.Z. He, Z.Y. Xiong, Z. Liu, S.L. Chen, Y.Z. Guo, M.Q. Zeng, J.H. Lin, L. Fu, Liquid metal for high-entropy alloy nanoparticles synthesis, Nature 619 (7968) (2023) 73-77. [30] Z.Y. Wang, X.N. Chen, Y.R. Ding, X.F. Zhu, Z.H. Sun, H.T. Zhou, X. Li, W.X. Yang, J.L. Liu, R.Z. He, J.R. Luo, T. Yu, M.Q. Zeng, L. Fu, Synthesis of two-dimensional high-entropy transition metal dichalcogenide single crystals, J. Am. Chem. Soc. 147 (2) (2025) 1392-1398. [31] P.P. Li, X.J. Zhang, J.N. Wang, Y.M. Xue, Y.B. Yao, S.S. Chai, B. Zhou, X. Wang, N.F. Zheng, J.N. Yao, Engineering O-O species in boron nitrous nanotubes increases olefins for propane oxidative dehydrogenation, J. Am. Chem. Soc. 144 (13) (2022) 5930-5936. [32] X.C. Cheng, Y.N. Zhang, J.N. Wang, X.J. Zhang, C. Sun, Y.A. Yang, X. Wang, B-O oligomers or ring species in AlB2: which is more selective for propane oxidative dehydrogenation? ACS Catal. 13 (3) (2023) 1630-1637. [33] W. Ye, S.M. Chen, Y. Lin, L. Yang, S.J. Chen, X.S. Zheng, Z. Qi, C.M. Wang, R. Long, M. Chen, J.F. Zhu, P. Gao, L.R. Song, J. Jiang, Y. Xiong, Precisely tuning the number of Fe atoms in clusters on N-doped carbon toward acidic oxygen reduction reaction, Chem. 5(11) (2019) 2865-2878. [34] L. Fu, Z.Y. Liu, Highlights of research activities in advanced materials at Wuhan University, Adv. Mater. (2024) e2313766. [35] J. Liang, S. Chen, E. Ni, J. Tang, G. Cao, H. Wang, Z. Li, M. Zeng, L. Fu, High-entropy alloy array via liquid metal nanoreactor, Adv Mater 36 (31) (2024) e2403865. [36] Y. Wang, B.J. Park, V.K. Paidi, R. Huang, Y.C. Lee, K.J. Noh, K.S. Lee, J.W. Han, Precisely constructing orbital coupling-modulated dual-atom Fe pair sites for synergistic CO2 electroreduction, ACS Energy Lett. 7 (2) (2022) 640-649. [37] T.C. Pu, J.Q. Ding, F.X. Zhang, K. Wang, N. Cao, E.J.M. Hensen, P.F. Xie, Dual atom catalysts for energy and environmental applications, Angew. Chem. Int. Ed. 62 (40) (2023) e202305964. [38] X.D. Chen, J. Hu, J.L. Liu, P. Hai, J.Q. Guan, Advances in dual-atom catalysts for the electroreduction of carbon dioxide, Chem. Eng. J. 522 (2025) 167504. [39] Z.P. Zeng, L.Y. Gan, H.B. Yang, X.Z. Su, J.J. Gao, W. Liu, H. Matsumoto, J. Gong, J.M. Zhang, W.Z. Cai, Z.Y. Zhang, Y.B. Yan, B. Liu, P. Chen, Orbital coupling of hetero-diatomic nickel-iron site for bifunctional electrocatalysis of CO2 reduction and oxygen evolution, Nat. Commun. 12 (2021) 4088. [40] L. Pan, J.N. Wang, F. Lu, Q. Liu, Y.H. Gao, Y. Wang, J.Z. Jiang, C. Sun, J. Wang, X. Wang, Single-atom or dual-atom in TiO2 nanosheet: which is the better choice for electrocatalytic urea synthesis? Angew. Chem. Int. Ed 62 (8) (2023) e202216835. [41] A.N. Zhu, Y.T. Cao, N. Zhao, Y.C. Jin, Y.L. Li, L. Yang, C.C. Zhang, Y.X. Gao, Z. Zhang, Y.Y. Zhang, W. Xie, Geminal synergy in Pt-Co dual-atom catalysts: from synthesis to photocatalytic hydrogen production, J. Am. Chem. Soc. 146 (48) (2024) 33002-33011. [42] X. Yang, L.Y. Xu, Y.X. Li, Do we achieve “1 + 1 > 2” in dual-atom or dual-single-atom catalysts? Coord. Chem. Rev. 516 (2024) 215961. [43] L.F. Li, J.M. Zhu, F.P. Kong, Y.J. Wang, C. Kang, M. Xu, C.Y. Du, G.P. Yin, Tailoring atomic strain environment for high-performance acidic oxygen reduction by Fe-Ru dual atoms communicative effect, Matter 7 (4) (2024) 1517-1532. [44] X.C. Wang, N. Zhang, H.S. Shang, H.J. Duan, Z.Y. Sun, L.L. Zhang, Y.T. Lei, X. Luo, L. Zhang, B. Zhang, W.X. Chen, Precisely designing asymmetrical selenium-based dual-atom sites for efficient oxygen reduction, Nat. Commun. 16 (2025) 470. [45] Y.X. Wang, X.Z. Cui, J.Q. Zhang, J.L. Qiao, H.T. Huang, J.L. Shi, G.X. Wang, Advances of atomically dispersed catalysts from single-atom to clusters in energy storage and conversion applications, Prog. Mater. Sci. 128 (2022) 100964. [46] Y.R. Ying, X. Luo, J.L. Qiao, H.T. Huang, Double-atom catalysts: “more is different:” synergistic effect and structural engineering in double-atom catalysts (adv. funct. mater. 3/2021), Adv. Funct. Mater. 31 (3) (2021) 2170015. [47] X. Liang, N.H. Fu, S.C. Yao, Z. Li, Y.D. Li, The progress and outlook of metal single-atom-site catalysis, J. Am. Chem. Soc. 144 (40) (2022) 18155-18174. [48] J.H. Fu, J.H. Dong, R. Si, K.J. Sun, J.Y. Zhang, M.R. Li, N.N. Yu, B.S. Zhang, M.G. Humphrey, Q. Fu, J.H. Huang, Synergistic effects for enhanced catalysis in a dual single-atom catalyst, ACS Catal. 11 (4) (2021) 1952-1961. [49] Q. Wang, H.Y. Shi, S.H. Fang, C.C. Wang, J.M. Zeng, G.B. Yang, J. Li, G. Mele, C. Wang, Atomic-level design of Pt-Pd dual sites on TiO2: Overcoming single-atom limitations for enhanced photocatalysis, J. Alloys Compd. 1035 (2025) 181484. [50] J.L. Huang, W.D. Zhou, X.F. Luo, Y. Ding, D.Q. Peng, M.Y. Chen, H. Zhou, C. Hu, C.L. Yuan, S.G. Wang, Enhancing hydrogen evolution reaction of confined monodispersed NiSe2-X nanoparticles by high-frequency alternating magnetic fields, Chem. Eng. J. 454 (2023) 140279. [51] Y.B. Li, C.Q. Cheng, S.H. Han, Y.M. Huang, X.W. Du, B. Zhang, Y.F. Yu, Electrocatalytic reduction of low-concentration nitric oxide into ammonia over Ru nanosheets, ACS Energy Lett. 7 (3) (2022) 1187-1194. [52] Y.Y. Zhang, C. Liang, J. Wu, H. Liu, B. Zhang, Z.X. Jiang, S.W. Li, P. Xu, Recent advances in magnetic field-enhanced electrocatalysis, ACS Appl. Energy Mater. 3 (11) (2020) 10303-10316. [53] D.S. Shao, T.Z. Wu, X.N. Li, X.M. Ren, Z.J. Xu, A perspective of magnetoelectric effect in electrocatalysis, Small Sci. 3 (10) (2023) 2300065. [54] S.Z. Luo, K. Elouarzaki, Z.J. Xu, Electrochemistry in magnetic fields, Angew. Chem. Int. Ed 61 (27) (2022) e202203564. [55] C.C. Lin, T.R. Liu, S.R. Lin, K.M. Boopathi, C.H. Chiang, W.Y. Tzeng, W.C. Chien, H.S. Hsu, C.W. Luo, H.Y. Tsai, H.A. Chen, P.C. Kuo, J. Shiue, J.W. Chiou, W.F. Pong, C.C. Chen, C.W. Chen, Spin-polarized photocatalytic CO2 reduction of Mn-doped perovskite nanoplates, J. Am. Chem. Soc. 144 (34) (2022) 15718-15726. [56] Y.W. Zhang, Q. Wu, J.Z.Y. Seow, Y.J. Jia, X. Ren, Z.J. Xu, Spin states of metal centers in electrocatalysis, Chem. Soc. Rev. 53 (16) (2024) 8123-8136. [57] C.Y. Hu, Y.Y. Dong, Q.Q. Shi, R. Long, Y.J. Xiong, Catalysis under electric-/ magnetic-/ electromagnetic-field coupling, Chem. Soc. Rev. 54 (2) (2025) 524-559. [58] J.N. Wang, K.H. Zhao, Y.B. Yao, F. Xue, F. Lu, W.S. Yan, F.L. Yuan, X. Wang, Ferromagnetic Fe-TiO2 spin catalysts for enhanced ammonia electrosynthesis, Nat. Commun. 16 (1) (2025) 1129. [59] T. Sun, Z.Y. Tang, W.J. Zang, Z.J. Li, J. Li, Z.H. Li, L. Cao, J.S.D. Rodriguez, C.O.M. Mariano, H.M. Xu, P. Lyu, X. Hai, H.H. Lin, X.Y. Sheng, J.W. Shi, Y. Zheng, Y.R. Lu, Q. He, J.S. Chen, K.S. Novoselov, C.H. Chuang, S.B. Xi, X. Luo, J. Lu, Ferromagnetic single-atom spin catalyst for boosting water splitting, Nat. Nanotechnol. 18 (7) (2023) 763-771. [60] X. Ren, T.Z. Wu, Y.M. Sun, Y. Li, G.Y. Xian, X.H. Liu, C.M. Shen, J. Gracia, H.J. Gao, H.T. Yang, Z.J. Xu, Spin-polarized oxygen evolution reaction under magnetic field, Nat. Commun. 12 (2021) 2608. [61] L. Pan, M.H. Ai, C.Y. Huang, L. Yin, X. Liu, R.R. Zhang, S.B. Wang, Z. Jiang, X.W. Zhang, J.J. Zou, W.B. Mi, Manipulating spin polarization of titanium dioxide for efficient photocatalysis, Nat. Commun. 11 (1) (2020) 418. [62] G. Zhou, P.F. Wang, H. Li, B. Hu, Y. Sun, R. Huang, L.Z. Liu, Spin-sate reconfiguration induced by alternating magnetic field for efficient oxygen evolution reaction, Nat. Commun. 12 (1) (2021) 4827. [63] F. Lu, J.N. Wang, S.S. Chai, Y. Wang, Y.B. Yao, X. Wang, Asymmetric coupled binuclear-site catalysts for low-temperature selective acetylene semi-hydrogenation, Angew. Chem. Int. Ed 64 (2) (2025) e202414719. [64] M. Liu, N. Li, S.F. Cao, X.M. Wang, X.Q. Lu, L.J. Kong, Y.H. Xu, X.H. Bu, A “pre-constrained metal twins” strategy to prepare efficient dual-metal-atom catalysts for cooperative oxygen electrocatalysis, Adv. Mater. 34 (7) (2022) e2107421. [65] Z.K. Xie, S.J. Xu, L.H. Li, S.H. Gong, X.J. Wu, D.B. Xu, B.D. Mao, T. Zhou, M. Chen, X. Wang, W.D. Shi, S.Y. Song, Well-defined diatomic catalysis for photosynthesis of C2H4 from CO2, Nat. Commun. 15 (1) (2024) 2422. [66] S. Chen, B.B. Gong, J. Gu, Y. Lin, B. Yang, Q.Q. Gu, R. Jin, Q. Liu, W.X. Ying, X.X. Shi, W.L. Xu, L.H. Cai, Y. Li, Z.H. Sun, S.Q. Wei, W.H. Zhang, J.L. Lu, Dehydrogenation of ammonia borane by platinum-nickel dimers: regulation of heteroatom interspace boosts bifunctional synergetic catalysis, Angew. Chem. Int. Ed 61 (41) (2022) e202211919. [67] X. Hai, Y. Zheng, Q. Yu, N. Guo, S. Xi, X. Zhao, S. Mitchell, X. Luo, V. Tulus, M. Wang, X. Sheng, L. Ren, X. Long, J. Li, P. He, H. Lin, Y. Cui, X. Peng, J. Shi, J. Wu, C. Zhang, R. Zou, G. Guillen-Gosalbez, J. Perez-Ramirez, M.J. Koh, Y. Zhu, J. Li, J. Lu, Geminal-atom catalysis for cross-coupling, Nature 622 (7984) (2023) 754-760. [68] X.C. Wang, N. Zhang, S.H. Guo, H.S. Shang, X. Luo, Z.Y. Sun, Z.H. Wei, Y.T. Lei, L.L. Zhang, D. Wang, Y.F. Zhao, F. Zhang, L. Zhang, X. Xiang, W.X. Chen, B. Zhang, P-d orbital hybridization induced by asymmetrical FeSn dual atom sites promotes the oxygen reduction reaction, J. Am. Chem. Soc. 146 (31) (2024) 21357-21366. [69] X.J. Zhang, J.N. Wang, Y.B. Yao, Q. Liu, F. Lu, X. Wang, Embedding isolated Fe species in titania increases olefins for oxidative propane dehydrogenation, AlChE. J. 69 (7) (2023) e18088. [70] B. Tang, Y.N. Zhou, Q.Q. Ji, Z.C. Zhuang, L. Zhang, C. Wang, H.B. Hu, H.J. Wang, B.B. Mei, F. Song, S. Yang, B.M. Weckhuysen, H. Tan, D.S. Wang, W.S. Yan, A Janus dual-atom catalyst for electrocatalytic oxygen reduction and evolution, Nat. Synth 3 (7) (2024) 878-890. [71] H. Tan, B. Tang, Y. Lu, Q.Q. Ji, L.Y. Lv, H.L. Duan, N. Li, Y. Wang, S.H. Feng, Z. Li, C. Wang, F.C. Hu, Z.H. Sun, W.S. Yan, Engineering a local acid-like environment in alkaline medium for efficient hydrogen evolution reaction, Nat. Commun. 13 (1) (2022) 2024. [72] N. Li, L. Cai, C. Wang, Y. Lin, J.Z. Huang, H.Y. Sheng, H.B. Pan, W. Zhang, Q.Q. Ji, H.L. Duan, W. Hu, W.H. Zhang, F.C. Hu, H. Tan, Z.H. Sun, B. Song, S. Jin, W.S. Yan, Identification of the active-layer structures for acidic oxygen evolution from 9R-BaIrO3 electrocatalyst with enhanced iridium mass activity, J. Am. Chem. Soc. 143 (43) (2021) 18001-18009. [73] N. Li, L. Cai, G.P. Gao, Y. Lin, C. Wang, H.J. Liu, Y.Y. Liu, H.L. Duan, Q.Q. Ji, W. Hu, H. Tan, Z.M. Qi, L.W. Wang, W.S. Yan, operando direct observation of stable water-oxidation intermediates on Ca2-xIrO4 nanocrystals for efficient acidic oxygen evolution, Nano Lett. 22 (17) (2022) 6988-6996. [74] N. Li, L. Cai, G.P. Gao, Y.Y. Liu, C. Wang, Z.Y. Liu, Q.Q. Ji, H.L. Duan, L.W. Wang, W.S. Yan, Origin of surface amorphization and catalytic stability of Ca2-xIrO4 nanocrystals for acidic oxygen evolution: critical roles of acid anions, ACS Catal. 12 (21) (2022) 13475-13481. [75] Q.Q. Ji, Y. Kong, H. Tan, H.L. Duan, N. Li, B. Tang, Y. Wang, S.H. Feng, L.Y. Lv, C. Wang, F.C. Hu, W.H. Zhang, L. Cai, W.S. Yan, operando identification of active species and intermediates on sulfide interfaced by Fe3O4 for ultrastable alkaline oxygen evolution at large current density, ACS Catal. 12 (8) (2022) 4318-4326. [76] S.H. Wang, K. Uwakwe, L. Yu, J.Y. Ye, Y.Z. Zhu, J.T. Hu, R.X. Chen, Z. Zhang, Z.Y. Zhou, J.F. Li, Z.X. Xie, D.H. Deng, Highly efficient ethylene production via electrocatalytic hydrogenation of acetylene under mild conditions, Nat. Commun. 12 (1) (2021) 7072. [77] Y. Sun, D.D. Ding, C. Chang, X.L. Liu, C. Zhang, P.F. Tian, C.X. Cao, Z.X. Yang, J. Xu, Y.F. Han, Advances in operando techniques for the heterogeneous catalytic reactions, Chemical Industry and Engineering Progress 38(01) (2019) 260. (in Chinese). [78] H.F. Zhao, Y.C. Zhu, H.Y. Ye, Y. He, H. Li, Y.F. Sun, F. Yang, R.M. Wang, Atomic-scale structure dynamics of nanocrystals revealed by in situ and environmental transmission electron microscopy, Adv. Mater. 35 (50) (2023) e2206911. [79] S. Chen, Y.Y. Xu, X. Chang, Y. Pan, G.D. Sun, X.H. Wang, D.L. Fu, C.L. Pei, Z.J. Zhao, D. Su, J.L. Gong, Defective TiO x overlayers catalyze propane dehydrogenation promoted by base metals, Science 385 (6706) (2024) 295-300. [80] Y.C. Chai, S.H. Chen, Y. Chen, F.F. Wei, L.R. Cao, J. Lin, L. Li, X.Y. Liu, S. Lin, X.D. Wang, T. Zhang, Dual-atom catalyst with N-colligated Zn1Co1 species as dominant active sites for propane dehydrogenation, J. Am. Chem. Soc. 146 (1) (2024) 263-273. [81] Q.S. Wu, M.T. McDowell, Y. Qi, Effect of the electric double layer (EDL) in multicomponent electrolyte reduction and solid electrolyte interphase (SEI) formation in lithium batteries, J. Am. Chem. Soc. 145 (4) (2023) 2473-2484. [82] J.W. Abbott, F. Hanke, Kinetically corrected Monte Carlo-molecular dynamics simulations of solid electrolyte interphase growth, J. Chem. Theory Comput. 18 (2) (2022) 925-934. |
| [1] | Chaoqun Wu, Xun Liu, Fujun Yao, Xin Yang, Yan Wang, Wenyuan Hu. Crystalline-magnetism action in biomimetic mineralization of calcium carbonate [J]. Chinese Journal of Chemical Engineering, 2023, 59(7): 146-152. |
| [2] | Behzad Khedri, Mostafa Mostafaei, Seyed Mohammad Safieddin Ardebili. Flow-mode synthesis of biodiesel under simultaneous microwave-magnetic irradiation [J]. Chinese Journal of Chemical Engineering, 2019, 27(10): 2551-2559. |
| [3] | Hongxia Zhao, Feng Zhang, Hanqing Hu, Sheng Liu, Jitian Han. Experimental study on freezing of liquids under static magnetic field [J]. , 2017, 25(9): 1288-1293. |
| [4] | T. Hayat, M. Ijaz Khan, M. Waqas, A. Alsaedi, T. Yasmeen. Diffusion of chemically reactive species in third grade fluid flow over an exponentially stretching sheet considering magnetic field effects [J]. , 2017, 25(3): 257-263. |
| [5] | Yong Liu, Jianfei Bai, Hongtao Duan, Xiaohong Yin. Static magnetic field-assisted synthesis of Fe3O4 nanoparticles and their adsorption of Mn(II) in aqueous solution [J]. , 2017, 25(1): 32-36. |
| [6] | SUN Yongli, LIU Yong, WU Songhai, JIA Shaoyi. Effect of magnetic field on the extraction process of acetone-water-trichloroethane system [J]. , 2007, 15(6): 916-918. |
| [7] | YU Huiping(宇慧平), WANG Jing(王敬), SUI Yunkang(隋允康), DAI Xiaolin(戴小林) and AN Guoping(安国平). Simulation of Heat Transfer and Oxygen Transport in a Czochralski Silicon System with and Without a Cusp Magnetic Field [J]. , 2006, 14(1): 8-14. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||
京公网安备 11010102001993号 
